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Abstract

This dataset challenges the time series com-
munity with the task of satellite-based vege-
tation identification on large scale real-world
dataset of satellite data acquired during one en-
tire year. It consists of time series data with
associated crop types from 580k field parcels
in Brittany, France (Breizh in local language).
Along with this dataset, we provide results and
code of a Long Short-Term Memory network
and Transformer network as baselines. We re-
lease dataset, along with preprocessing scripts and
baseline models in https://github.com/
TUM-LMF/BreizhCrops and encourage me-
thodical researchers to benchmark and develop
novel methods applied to satellite-based crop
monitoring.

1. Earth Observation and Agricultural
Monitoring

Today, optical satellites observe the entire surface Earth at
weekly intervals and measure the reflectance of sunlight at
multiple spectral wavelengths. This regular coverage allows
for the monitoring of vegetation at discrete time intervals
at spatial resolutions between 10m and 60m. The unit of
measurement on optical satellite imagery is the surface re-
flectance

ρλ =
πLλd

2

Esun cos(ϕsun)
(1)

of several distinct wavelength bands indicated by the central
wavelength λ and discretized in a spatial grid of pixels.
The reflectance is obtained from the measured radiance
Lλ in W

srm2 on the satellite sensor projected on the surface
using the solar zenith angle ϕsun of each pixel. To obtain
unitless reflectances, it is normalized with the total solar
irradiance Esun in W

srm2 scaled by the squared Earth-Sun
distance d (Richter et al., 2010).
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(b) A single example of category corn

Figure 1: Examples of the input time series of reflectances
ρ for all 13 spectral bands of the Sentinel 2 satellite.

The identification of crop types form spaceborne imagery
forms an important component of agricultural monitoring.
Assessing the cultivated crop types early in the season allows
for estimating the expected crop yield at large scale. A
classification model trained on crop type identification likely
indirectly learns a model of the vegetation phenology, i.e.,
characteristic life cycle events. Analyses of these events
at different regional or temporal scales may in future help
estimate the effect of anomalous events, such as droughts,
pests on the expected crop yield.

(a) Brittany within Europe (b) NUTS-3 regions of Britanny

Figure 2: The location of the NUTS-3 region FRH0 of
Brittany, France.
.
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Departements NUTS-3 Parcels

Morbihan FRH04 158522
Côtes-d’Armor FRH01 221095
Finistère FRH02 180565
Ille-et-Vilaine FRH03 207993

(a) The four NUTS-3 Departements of
Brittany and number of field parcels per
region
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(b) Class frequencies per partition

Figure 3: Analyses of the number of parcels and class frequencies per partition in the vector dataset.

2. The Breizh Crops Dataset
The dataset comprises 580k field parcels in the Region of
Brittany (Breizh in the local language), France, of the season
2017. We show the region along with two examples in
Fig. 2. The example field parcels in Fig. 1b and in Fig. 1a
show all spectral information within the respective field
geometry within the season of 2017. Note that the data
is positively biased by clouds which cause systematically
positive outliers in the time series data, as annotated in
Fig. 1b

2.1. Organization

The data is organized at a regional level by the Nomencla-
ture des unités territoriales statistiques (NUTS) which forms
an international standard for referencing authoritative dis-
tricts. Brittany is a NUTS-2 region, as highlighted in Fig. 2a.
It is further divided into the four NUTS-3 regions Côtes-
d’Armor, Finistère, Ille-et-Vilaine, and Morbihan, shown in
Fig. 2b. We partitioned all acquired field parcels according
to the NUTS-3 regions and suggest partitioning the dataset
in partitions for training, validation, and evaluation based
on these spatially distinct regions.

2.2. Satellite Data

To obtain the satellite data, we downloaded all available
Sentinel 2 images from Google Earth Engine (Gorelick et al.,
2017) at processing level L1C. All D = 13 spectral bands
located within one field parcel were mean-aggregated to a
feature vector xt, as shown in the examples in Fig. 2. We
provide a script for downloading the data in the associated
codebase.

2.3. Crop Type Labels

The Common Agricultural Policy of the European Union
subsidizes farmers based on the cultivated crops. Each mem-
ber country is required to gather geographical information
of geometry and cultivated crop. This information is ob-
tained from the farmers themselves by surveys within the
subsidy application process. National agencies monitor the

correctness either by gathering control samples on-site or by
means of remote sensing and Earth observation. In France,
the National Institue of Forest and Geography Information
(IGN) is responsible for gathering this information and re-
cently started releasing anonymized parcel geometries and
type of cultivated crop with an open license policy1.

For this dataset, we selected the 13 crop groups that appear
at least 250 times in each NUTS-3 region and at least 1000
times in all regions. Still, due to the nature of agricultural
production focused on a few dominant crop types, a class
imbalance can be observed in the data. Regional differences
in environmental conditions further vary the label distri-
butions for the respective partitions, as can be seen in the
histogram of classes per region in Fig. 3b.

3. Baseline Methods
We implemented two baseline methods to obtain an em-
piric evaluation on expected classification accuracies on the
datasets.

3.1. Multilayer LSTM

First, we employ a multi-layer bidirectional Long Short-
Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997)
encoder that iteratively extracts classification-characteristic
features from a sequence of inputs. Throughout this work,
we use three stacked bidirectional long short-term memory
layers with 128 hidden dimensions.

3.2. Transformer Encoder

Inspired by the success of self-attention networks, we also
show classification results using an encoder of the Trans-
former network (Vaswani et al., 2017). It uses N stacked
modules of H multiple self-attention heads and dmodel hid-
den states within the self attention vectors. We initially
experimented with the configuration of the original imple-
mentation, i.e., H = 8,N = 6, dmodel = 512, but found it

1https://www.data.gouv.fr/en/datasets/registre-parcellaire-
graphique-rpg-contours-des-parcelles-et-ilots-culturaux-et-leur-
groupe-de-cultures-majoritaire/
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difficult to converge to a good solution. Hence, we opted for
a smaller network configuration with N = 4 layers, H = 4
heads, and dmodel = 128.

3.3. Training Details

We trained the network hyper-parameters on the FRH01
and FRH02 partitions of the dataset and observed the ac-
curacy on the FRH03 partition. Each training sequence
has a different sequence length. The observation period,
however, ranges over one entire year. Hence, we decided to
randomly sample T ′ = 45 observations from all available
observations while maintaining the sequence order. This
sampling strategy results in sequence lengths of fixed length
which simplified the batching process and introduces a cer-
tain variability which may avoid overfitting of the model
on single specific sequence elements. Also, we use the
Adam (Kingma & Ba, 2014) optimizer with the learning
rate scheduler of (Vaswani et al., 2017). It initializes the
learning rate with

√
dmodel and increases it linearly for w

warm-up epochs. After the warm-up phase, the learning rate
decreases exponentially. All baselines were trained using
cross-entropy loss between the one-hot representation of the
predicted crop label and the ground truth.

4. Baseline Results
For the final accuracy evaluation we trained the baselines on
the FRH01, FRH02, and FRH03 partitions and report re-
sults on the FRH04 region. In Table 1, we compare the two
baselines using the overall accuracy, the kappa correlation
metric κ (Cohen, 1960), and the class-mean recall, preci-
sion, and f1-score. From these comparisons, both baselines
achieved comparable accuracies. The LSTM model slightly
outperformed the transformer baseline on the class-averaged
metrics, while the transformer was slightly superior in the
sample-wise accuracy. Still, the differences between these
two baselines were marginal. We analyze the class-wise
accuracies further in Fig. 4 to get a detailed insight into the
nature of classification performances achieved in this exper-
iment. In Fig. 4a we show the precision, recall, an f1-score
for each category in along with the number of samples per
category. The mean metrics and sum of parcels are displayed
in Fig. 4. Some categories, such as barley, wheat, corn, or
rapeseed were well-classified with accuracies around 90%
while others, such as protein crops, orchards, or temporary

meadows were poorly classified. Classes that were com-
posed of single distinct types of vegetation seemed more
distinguishable, while broadly defined categories, such as
orchards, were classified with less accuracy. Note that these
categories are official crop culture groups of the French
parcel system. Hence, we specifically did not remove these
broad categories from the dataset, as they pose a challeng-
ing task for methods and match the official categorization
system. Beyond the distinction of broad and narrow cate-
gories, some common categories, such as wheat (2), or corn
(3) were better classified, while less-common ones, such as
orchards (7), or protein crops (10) were predicted less accu-
rately. We interpret this as behavior caused the imbalance
of the dataset. When we observe the confusion matrix in
column-normalized recall in Fig. 4c and in row-normalized
precision in Fig. 4b, we can observe characteristic confu-
sions between the individual categories.

The accuracy metrics Fig. 4a are shown in in the diagonal,
while off-diagonal elements indicate systematic confusions
between two classes. Here, it appears that the categories
fodder (4), gel (5), miscellaneous (6), and orchards (7) were
often misclassified with each other. Overall, these results
show the complexity of the task of crop-type mapping from
remote sensing imagery. While some narrow categories
are classified well by the baselines other broader categories
achieve poor accuracy metrics.

5. Challenges
The results of the previous section show the general feasi-
bility but demonstrate the complexity of the task of clas-
sifying crop types from satellite imagery. This large scale
real-world dataset has the potential to impact vegetation
monitoring at a European or global scale. The satellite
data is globally available, while the ground truth labels are
gathering within the European Union. In the following, we
outline a series of methodical challenges associated with
the dataset that pose demanding questions to the time series
community and likely need to be addressed to improve the
accuracy of methods trained on this dataset.

Imbalanced class labels. Agricultural areas are commonly
dominated by few common crops, such as corn, meadow,
or wheat which are cultivated extensively. Nevertheless,
other types of vegetation are still of interest for the local

Table 1: Accuracy metrics for the Multi-layer bidirectional LSTM (Hochreiter & Schmidhuber, 1997) and the Transformer-
Encoder (Vaswani et al., 2017).

baseline accuracy κ mean f1 mean precision mean recall

Transformer (Vaswani et al., 2017) 0.69 0.63 0.57 0.60 0.56
LSTM (Hochreiter & Schmidhuber, 1997) 0.68 0.62 0.59 0.63 0.58
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# crop type prec. rec. f1 #samples

1 barley 90 86 88 4982
2 wheat 83 95 89 13850
3 corn 93 96 94 25059
4 fodder 51 34 41 3449
5 fallow 30 2 4 3863
6 misc. 50 49 49 12499
7 orchards 21 7 10 391
8 cereals 74 47 57 4645
9 perm. meadows 51 47 49 20966

10 protein crops 42 61 50 498
11 rapeseed 96 94 95 2664
12 temp. meadows 56 68 62 29977
13 vegetables 86 69 76 3114

63 58 59 125957

(a) per-class accuracy metrics

1 2 3 4 5 6 7 8 9 10 11 12 13

1
2
3
4
5
6
7
8
9

10
11
12
13

predicted

gr
ou

nd
tr

ut
h

0

1

(b) precision
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(c) recall

Figure 4: Accuracies and class confusions of the bidirectional LSTM-RNN model

authorities and should be classified at a reasonable accuracy.
This introduces a strong imbalance in the class frequencies,
as shown in Fig. 3b. Please note the logarithmic scale.

Classes with similar characteristics. Some categories can
be traced to one unique type of crop, such as wheat, or
corn. Here, the phenological characteristics can be traced to
single specific crop types. Other, less frequent classes, are
aggregated into groups that incorporate a broader range of
vegetation types which may be difficult to distinguish, such
as orchards.

Non-Gaussian noise induced by clouds. Clouds cover the
Earth’s surface at regular intervals. Their large reflectance
introduces a positive non-gaussian noise to the data at single
intervals. This manifests itself by positive outliers in the
reflectance data over the time scale, as can be seen in the
examples of Fig. 2.

Regional variations in the class distributions. Regional
variances in soil quality, elevation, temperature, and pre-
cipitation lead to a spatial correlation in the frequency of
dominated agricultural crop. This effect increases at larger
scales where these environmental conditions change signif-
icantly. Still, certain variations in crop distributions based
on regionally distinct regions can be seen in Fig. 3b.

Irregular sampling distance. The Sentinel 2 constellation
consists of two satellites which orbit the Earth at opposite
orbits. In optimal circumstances, one point on the Earth is
observed every two to five days. However, due to errors in
the data acquisition or bottlenecks in the data downlink, sin-
gle observations can be skipped. This leads to irregular time
intervals between observations in the time series between
two and ten days.

Variable sequence length. Earth observation satellites scan
the surface in stripes of 290km width (termed swath). To
ensure a constant coverage, the acquisition is planned with
a certain degree overlap towards the border of these stripes.

Due to this configuration, the sequence lengths T of ac-
quired images per field parcels are approximately 50 or 100
observations.

Spatial autocorrelation. Spatially closer objects are more
similar than distant ones (Tobler, 1970). This autocorre-
lation can introduce a dependence between training and
validation datasets that may disguise overfitting and im-
pede generalization. To counteract this, several researchers
(Rußwurm & Körner, 2017; Jean et al., 2018) have adopted
a training/validation/evaluation partitioning that groups spa-
tially distant parcels. Hence, we organized the data in their
respective NUTS-3 regions to encourage training on these
spatially separate regions.

6. Summary and Outlook
In this work, we challenge the time series community with
a large scale time series dataset for crop-type mapping. The
dataset is gathered, organized and structured from open
source raw label data and satellite measurements. The ob-
jective is to accurately classify a set of narrow and broad
crop type categories in multiple regions in Brittany, France.

A model that internalizes the discriminative characteristics
of these crop types encodes the effect of specific life-cycle
events of the crop. Hence, methods that excel at this dataset
may be good candidates for extracting other vegetation-
related characteristics, such as crop yield, or may be suit-
able to predict droughts. The satellite data of this kind is
globally available free of charge which may allow a global
application of well-performing model variants in the future.

Beyond the application-wise advantages of this dataset, it
also poses a series of methodical challenges to the time se-
ries community, as summarized in Section 5. The raw vector
dataset and the time series data is available via https://
github.com/tum-lmf/BreizhCrops along with
scripts for preprocessing, and the baseline implementations.

https://github.com/tum-lmf/BreizhCrops
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