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Abstract
We introduce GluonTS, the Gluon Time Series
Toolkit, a library for deep learning based time
series modeling. GluonTS simplifies the devel-
opment of and experimentation with time series
models for common tasks such as forecasting or
anomaly detection. It provides all necessary com-
ponents and tools that scientists need for quickly
building new models, for efficiently running and
analyzing experiments and for evaluating model
accuracy.

1. Introduction
Large collections of time series are ubiquitous and occur
in areas as different as natural and social sciences, internet
of things applications, cloud computing, supply chains and
many more. Traditionally, time series modeling has focused
(mostly) on individual time series via local models.1 A
number of commercial and open-source toolkits exist for
this (Hyndman & Khandakar, 2008; Taylor & Letham, 2017;
Scott & Varian, 2014).

In recent years, advances in deep learning have led to accu-
racy improvements over the local approach by utilizing the
large amounts of data available for estimating parameters
of a single global model over the entire collection of time
series (Flunkert et al., to appear; Wen et al., 2017; Laptev
et al., 2017). Deep learning frameworks, such as (Chen
et al., 2015; Paszke et al., 2017; Abadi et al., 2016) are
growing in popularity. In recent years, more application-
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1In local models, the free parameters of the time series model
are estimated per individual time series in the collection of time
series.

specific toolkits have appeared (Hieber et al., 2018; Dai
et al., 2018; Bingham et al., 2018). For time series mod-
eling, however, there exists, to the best of our knowledge,
currently no dedicated deep learning toolkit.

We fill this gap with GluonTS (https://gluon-ts.
mxnet.io/index.html) – a deep learning based li-
brary that bundles components, models and tools for time
series applications such as forecasting or anomaly detection.
GluonTS simplifies all aspects of scientific experiments
with time series models. It includes components such as
distributions, neural network architectures for sequences,
and feature processing steps which can be used to quickly
assemble and train new models. Apart from supporting pure
deep learning based models, GluonTS also includes proba-
bilistic models and components such as State-Space Models
and Gaussian Processes (Rangapuram et al., 2018; Krishnan
et al., 2017; Fraccaro et al., 2016). The library is based
on the Gluon API2 of the MxNet deep learning framework
(Chen et al., 2015).

2. Library design and components
GluonTS supports researchers in their experiments through
modular design and well tested scalable components. Exper-
iments are reproducibly, since all details of the configuration,
such as parameter values, can be logged and the experiment
can be re-created from the log.

Listing 1 shows a simple workflow for creating and training
a pre-built forecasting model, and evaluating the model in
a backtest. GluonTS contains a set of time series specific
transformations that include splitting and padding of time
series (e.g. for evaluation splits), common time series trans-
formation such as Box-Cox transformations or marking of
special points in time and missing values. A user can easily
include custom transformations for specific purposes, and
combine them with existing transformations in a pipeline.

GluonTS also provides a flexible abstraction for probabil-

2https://mxnet.apache.org/versions/
master/gluon/index.html
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Listing 1 Model training and evaluation in GluonTS

from gluonts.dataset import load dataset

from gluonts.model.deepar import DeepAREstimator

from gluonts.trainer import Trainer

from gluonts.evaluation import Evaluator

from gluonts.evaluation.backtest import backtest metrics

meta, train ds , test ds = load dataset(’./mydataset’)

estimator = DeepAREstimator(

freq=meta.freq,

prediction length=100,

batch size=32,

trainer=Trainer(epochs=20)

)

predictor = estimator.train(train ds)

evaluator = Evaluator(quantiles=(0.1, 0.5, 0.9))

agg metrics , item metrics = backtest metrics(

train dataset=train ds ,

test dataset=test ds ,

estimator=predictor ,

evaluator=evaluator

)

ity distributions (and densities), which are common build-
ing blocks in probabilistic time series modeling. Concrete
implementations include common parametric distributions,
such as Gaussian, Student’s t, gamma, and negative bino-
mial as well as more complex transformed distributions
(Dillon et al., 2017; Rezende & Mohamed, 2015).

Trained forecast models (i.e. predictors) return Forecast ob-
jects as predictions, which contain a time index (start, end
and time granularity) and a representation of the probability
distribution of values over the time index. Different models
may use different techniques for estimating and representing
this joint probability distribution, such as sample paths for
auto-regressive models (Seeger et al., 2016; Flunkert et al.,
to appear) or a collection of quantiles (Wen et al., 2017;
Gasthaus et al., 2019).

Forecast objects in GluonTS have a common interface
that allows the Evaluation component to compute accuracy
metrics such as quantile loss, Mean Absolute Scale Error
(MASE), Mean Absolute Percent Error (MAPE) and Scaled
Mean Absolute Percent Error (sMAPE) using simple or
complex backtest scenarios (e.g. rolling evaluations) For
qualitatively assessing the accuracy of time series models,
GluonTS contains methods that visualize time series and
forecasts using matplotlib (Hunter, 2007).

While GluonTS can be used directly on a laptop, training
and prediction can also be scaled up and out through inte-
gration with Amazon SageMaker. SageMaker is a managed

machine learning service on AWS that handles model train-
ing as well as predictions.

3. Time Series Problems & Models
GluonTS addresses probabilistic modeling of uni- or multi-
variate sequences of (large) collections of time series. Im-
portant applications include forecasting, smoothing and
anomaly detection. More formally, let Z = {zi,1:Ti}Ni=1

be a set of N univariate time series, where zi,1:Ti :=
(zi,1, zi,2, . . . , zi,Ti), and zi,t ∈ R denotes the value of
the i-th time series at time t. We mainly consider time
series where the time points are equally spaced but the time
units across different sets can be arbitrary (e.g. hours, days,
months). Furthermore, let X = {xi,1:Ti+τ}Ni=1 be a set of
associated, time-varying covariate vectors with xi,t ∈ RD.

The goal of forecasting (Hyndman & Athanasopou-
los, 2017) is to predict the probability distribution
p (zi,Ti+1:Ti+τ | zi,1:Ti ,xi,1:Ti+τ ; Φ) of future values
zi,Ti+1:Ti+τ given the past values zi,1:Ti , the covariates
xi,1:Ti+τ , and the model parameters Φ:

Smoothing or missing value imputation in time series can
leverage the sequence structure, and therefore allow for
more sophisticated approaches compared to the general
missing value imputation setting (e.g., (Biessmann et al.,
2018)). Smoothing is similar to forecasting, except that the
time points that we want to predict do not lie in the future.
Instead, for a set of series and arbitrary time points there
are missing or unobserved values, and the goal is to estimate
the (joint) probability distribution over these missing values.

In anomaly or outlier detection we want to identify time
points, where the observed values are unlikely to have oc-
curred. While we may have additional labels that annotate
anomalous behavior, it is in many applications not feasi-
ble to directly train a classifier on these labels, because the
labels are too sparse – after all, anomalies are often rare.
In this unsupervised case, anomaly detection is similar to
forecasting, except that all values are observed and we want
to know how likely they were. A probabilistic forecasting
model can be converted into an anomaly detection model
in different ways. For univariate models where the cumula-
tive distribution function (CDF) of the marginal predicted
distribution can be evaluated, one can directly calculate the
p-value (tail probability) of a newly observed data point via
the CDF (Shipmon et al., 2017). This allows us to mark
unlikely points or unlikely sequences of observations as
anomalies.

All these tasks from have at their core the estimation of a
joint probability distribution over time series values at dif-
ferent time points. We model this as a supervised learning
problem, by fixing a model structure upfront and learn-
ing the model parameters Φ using a statistical optimization
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method, such as maximum likelihood estimation, and the
sets Z and X as training data.

Classical models that were developed for these tasks (Hynd-
man & Athanasopoulos, 2017), are, with some exceptions
(Chapados, 2014), local models that learn the parameters Φ
for each time series individually. Recently, however, several
neural time series models have been proposed (Flunkert
et al., to appear; Gasthaus et al., 2019; Rangapuram et al.,
2018; Laptev et al., 2017; Wen et al., 2017) where a single
global model is learned for all time series in the dataset by
sharing the parameters Φ.

Time series models can be broadly categorized as gener-
ative and discriminative, depending on how the target Z
is modeled (Ng & Jordan, 2002).3 Generative models as-
sume that the given time series are generated from an un-
known stochastic process p(Z|X; Φ) given the covariates
X . Prominent examples include classical models such as
ARIMA and ETS (Hyndman et al., 2008), Bayesian struc-
tural time series (BSTS) (Scott & Varian, 2014) and the
recently proposed deep state space model (Rangapuram
et al., 2018). The unknown parameters Φ of this stochastic
process are typically estimated by maximizing the likeli-
hood, which is the probability of the observed time series,
{zi,1:Ti}, under the model p(Z|X; Φ), given the covariates
{xi,1:Ti}. Once the parameters Φ are learned, the forecast
distribution can be obtained from p(Z|X; Φ). In contrast
to ETS and ARIMA, which learn Φ per time series indi-
vidually, neural generative models like (Rangapuram et al.,
2018) further express Φ as a function of a neural network
whose weights are shared among all time series and learned
from the whole training data.

Discriminative models such as (Flunkert et al., to appear;
Gasthaus et al., 2019; Wen et al., 2017), model the condi-
tional distribution (for a fixed τ ) directly via a neural net-
work. Compared to generative models, conditional models
are more flexible, since they make less structural assump-
tions, and hence are also applicable to a broader class of
application domains.

We describe the generative model forecasting methods that
implemented in GluonTS: State Space Models, Deep State
Space Models and Gaussian Processes. Further examples
in this family include Deep Factor models (Maddix et al.,
2018), which we omit due to space restrictions.

State Space Models (SSMs) provide a principled frame-
work for modeling and learning time series patterns (Hynd-
man et al., 2008; Durbin & Koopman, 2012; Seeger et al.,
2016). In particular, SSMs model the temporal structure of

3Note that our categorization overloads the distinction used in
Machine Learning. Technically, neither of the category defined
here jointly models the covariates X and the target Z and thus
both belong to “discriminative” models in the traditional sense.

the data via a latent state lt ∈ RD that can be used to encode
time series components, such as level, trend, and seasonal-
ity patterns. A general SSM is described by the so-called
state-transition equation, defining the stochastic transition
dynamics p(lt|lt−1) by which the latent state evolves over
time, and an observation model specifying the conditional
probability p(zt|lt) of observations given the latent state.
Several classical methods (e.g., ETS, ARIMA) can be cast
under this framework by choosing appropriate transition
dynamics and observation model (Hyndman et al., 2008).

Deep State Space Models (Rangapuram et al., 2018) (re-
ferred as DeepState here) is a probabilistic time series fore-
casting approach that combines state space models with
deep learning. The main idea is to parametrize the lin-
ear SSM using a recurrent neural network (RNN) whose
weights are learned jointly from a dataset of raw time series
and associated covariates.

Gaussian Processes (GPs) are popular non-parametric
Bayesian methods for time series modeling (Girard et al.,
2003). A prior is specified on the stochastic process of the
time series f(·), using a user-defined mean function m(·)
and covariance structureK(·, ·).Given the target values, one
performs inference on the function space specified by the
covariance function, and obtains the posterior distribution
of the underlying function that is assumed to generate the
time series. In GluonTS, GPs (exact inference) with radial
basis function (RBF) and periodic kernels are included.

Inspired by the seq-to-seq approach presented in (Sutskever
et al., 2014), several forecasting methods of this type have
been proposed (Wen et al., 2017). GluonTS contains a flexi-
ble seq-to-seq framework that makes it possible to combine
generic encoder and decoder networks to create custom
sequence-to-sequence models. Moreover, GluonTS also
has example implementations of specific seq-to-seq mod-
els (Wen et al., 2017) as well as generic models (Vaswani
et al., 2017).

Neural Quantile Regression Models. Quantile regression
(Koenker, 2005) is a technique for directly predicting a par-
ticular quantile of a dependent variable. These techniques
have been combined with deep learning and employed in
the context of time series forecasting (Xu et al., 2016; Wen
et al., 2017). We have implemented variants of such quantile
decoder models in GluonTS following (Wen et al., 2017)
and combined them with RNN and Dilated Causal Convolu-
tion (CNN) encoders, resulting in models dubbed RNN-QR
and CNN-QR, respectively.

Transformer. GluonTS also contains an implementation
of the Transformer architecture (Vaswani et al., 2017) that
has been successful in natural language processing. The
Transformer model captures the dependencies of a sequence
by relying entirely on attention mechanisms. The elimina-
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tion of the sequential computation makes the representation
of each time step independent of all other time steps and
therefore allows the parallelization of the computation.

Auto-regressive models reduce the sequence prediction task
fully to a one-step-ahead problem. The model is trained on a
sequence by sequential one-step-ahead predictions, and the
error is aggregated over the sequence for the model update.
For prediction, the model is propagated forward in time by
feeding in samples, through multiple simulations, a set of
sample-paths representing the joint probability distribution
over the future of the sequence is obtained.

NPTS. The Non-Parametric Time Series forecaster
(NPTS) (Gasthaus, 2016) falls into the class of simple fore-
casters that use one of the past observed targets as the fore-
cast for the current time step. Unlike the naive or seasonal
naive forecasters that use a fixed time index (the previous
index T − 1 or the past season T − τ ) as the prediction
for the time step T , NPTS randomly samples a time index
t ∈ {0, . . . , T − 1} in the past to generate a prediction
sample for the current time step T . By sampling multiple
times, one obtains a Monte Carlo sample from the predictive
distribution, which can be used e.g. to compute prediction
intervals.

DeepAR. GluonTS contains an auto-regressive RNN time
series model, similar to the architectures described in
(Flunkert et al., to appear; Gasthaus et al., 2019). DeepAR
consists of a RNN (either using LSTM or GRU cells) that
takes the previous time points and co-variates as input.
DeepAR then either estimates parameters of a parametric
distribution or a highly flexible parameterization of the quan-
tile function.

Wavenet (van den Oord et al., 2016) is an auto-regressive
neural network with dilated causal convolutions at its core.
In the set of GluonTS models, it represents the archetypi-
cal auto-regressive Convolutional Neural Network (CNN)
models. While it was developed for speech synthesis tasks,
it is in essence a time series model that can be used for time
series modeling in other problem domains. In the text-to-
speech application, the output is a bounded signal and in
many implementations the value range is often quantized
into discrete bins. This discretized signal is then modeled
using a flexible softmax distribution that can represent ar-
bitrary distributions over the discrete values, at the cost of
discarding ordinal information.

4. Experiments
In this section we demonstrate the practical effectiveness
of a subset of the forecast and anomaly detection models.
Table 1 shows the CRPS (Gasthaus et al., 2019) accuracy of
different forecast methods in GluonTS on the following 11
public datasets: daily difference time series of log-return of
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Figure 1. Examples of anomalies detected using a trained DeepAR
forecast model on the electricity dataset.

stocks from S&P500; hourly time series of the electricity
consumption of 370 customers (Dheeru & Karra Taniskidou,
2017); 6 datasets from the M4 competition (Makridakis
et al., 2018) with daily, hourly, weekly, monthly, quaterly
and yearly frequencies; monthly demand for car parts used
in (Seeger et al., 2016); hourly occupancy rate, between 0
and 1, of 963 car lanes of San Francisco bay area freeways
(Dheeru & Karra Taniskidou, 2017); and daily traffic of 10K
Wikipedia pages.

The hyperparameters of each methods are kept constant
across all datasets and we train with 5000 gradient updates
the neural networks models.

Regarding accuracy, there is no overall dominating method.
Hence, the experiment illustrates the need for a flexible
modeling toolkit, such as GluonTS, that allows to assemble
models quickly for the dataset and application at hand.

Fig. 1 demonstrate how a GluonTS forecast model (in this
case DeepAR) can be used to detect anomalies (Shipmon
et al., 2017) – in this case points that do not match the series
historical behavior such as seasonality or noise level.

5. Conclusion
We introduced GluonTS, a toolkit for building time series
models based on deep learning and probabilistic modeling
techniques. By offering tooling and abstractions such as
probabilistic models, basic neural building blocks, human-
readable model logging for increased reproducability and
unified I/O & evaluation, GluonTS allows scientists to
rapidly develop new time series models for common tasks
such as forecasting or anomaly detection.

GluonTS’s pre-bundled implementations of state-of-the-art
models allow easy benchmarking of new algorithms. We
demonstrated this in a large scale experiment of running
the pre-bundled models on different datasets and comparing
their accuracy with classical approaches. Such experiments
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estimator Auto-ARIMA Auto-ETS Prophet NPTS Transformer CNN-QR DeepAR DeepAR-Spl GP
dataset

SP500-returns 0.975±0.000 0.982±0.001 0.985±0.001 0.832±0.000 0.836±0.001 0.906±0.006 0.838±0.003 0.836±0.005 0.858±0.000
electricity 0.056±0.000 0.067±0.000 0.094±0.000 0.055±0.000 0.062±0.001 0.081±0.003 0.065±0.007 0.065±0.009 0.111±0.001
m4-Daily 0.024±0.000 0.023±0.000 0.090±0.000 0.145±0.000 0.028±0.000 0.026±0.001 0.028±0.000 0.025±0.002 0.074±0.000
m4-Hourly 0.040±0.001 0.044±0.000 0.043±0.000 0.048±0.000 0.042±0.010 0.064±0.006 0.035±0.006 0.124±0.038 0.132±0.000
m4-Monthly 0.097±0.000 0.099±0.000 0.132±0.000 0.233±0.000 0.134±0.002 0.127±0.002 0.136±0.002 0.106±0.001 0.242±0.000
m4-Quarterly 0.080±0.000 0.078±0.000 0.123±0.000 0.255±0.000 0.095±0.003 0.091±0.000 0.091±0.001 0.081±0.002 0.335±0.000
m4-Weekly 0.050±0.000 0.051±0.000 0.108±0.000 0.296±0.001 0.075±0.005 0.056±0.000 0.072±0.001 0.043±0.001 0.137±0.000
m4-Yearly 0.124±0.000 0.126±0.000 0.156±0.000 0.355±0.000 0.127±0.004 0.121±0.000 0.121±0.001 0.111±0.002 0.455±0.000
parts 1.401±0.002 1.342±0.002 1.637±0.002 1.356±0.002 1.000±0.003 0.901±0.000 0.970±0.005 0.943±0.025 1.591±0.000
traffic - 0.462±0.000 0.273±0.000 0.162±0.000 0.132±0.010 0.186±0.002 0.127±0.004 0.087±0.001 0.152±0.000
wiki10k 0.610±0.001 0.841±0.001 0.681±0.000 0.452±0.000 0.294±0.008 0.314±0.002 0.295±0.028 0.273±0.007 0.452±0.000

Table 1. CRPS error for all methods (hyperparameters are fixed for each method between datasets). Ten runs are done for each method the
mean and std are computed over 10 runs. Missing value indicates the method did not complete in 24 hours. DeepAR and Transformer use
a Student’s-t distribution, DeepAR-Spl uses a quantile regression spline output. The GP uses the RBF kernel.

are a first step towards a more thorough understanding of
neural architectures for time series modelling.
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