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Abstract
Time series with non-uniform intervals occur in
many applications, and are difficult to model us-
ing standard recurrent neural networks (RNNs).
In this paper, we generalize the hidden states of
an RNN by parameterizing continuous-time dy-
namics of the latent state using a differential equa-
tion, which we call ODE-RNN. Furthermore, we
refine the recently-proposed Latent Ordinary Dif-
ferential Equation (Latent ODE) model by allow-
ing this continuous-time model to condition on
instantaneous observations. ODE-RNN and La-
tent ODE can naturally handle arbitrary time gaps
between observations. Finally, we augment the
Latent ODE model with a learned Poisson Pro-
cess to enhance its prediction-like properties. We
show experimentally that ODE-based models out-
perform RNN-based counterparts on irregularly-
sampled data.

1. Introduction
Time series with irregular time intervals are difficult to
model with recurrent neural networks, even though they
have became increasingly popular for modeling sequential
data. These models treat observations as a sequence of
independent tokens and don’t account for variable gaps be-
tween observations. A common approach is to discretize the
timeline into equal non-overlapping intervals (Lipton et al.,
2016; Marlin et al., 2012) and use heuristics such as taking
the average of multiple observations in a given interval, or
introducing a binary mask to indicate that no observations
were made within the interval. Unfortunately, preprocess-
ing the observations this way leads to loss of information
about the density of events, which itself can be informa-
tive (e.g. ”missing not at random”). A different approach
is to continuously update the hidden state when there are
no observations, usually modeled by a learned exponential
decay(Che et al., 2018; Cao et al., 2018; Rajkomar et al.,
2018; Mei & Eisner, 2017).

In this paper, we generalize RNNs with exponential decay to
continuously changing hidden states between observations.
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Figure 1: Comparing hidden states dymamics of differ-
ent time-series models. Top: A standard GRU-RNN has
constant or undefined hidden states between observations.
Middle: The GRU-Decay model has states which exponen-
tially decay towards zero. Bottom: Our ODE-GRU model
has continuous-time hidden-state dynamics specified by a
neural network.

This allows us to model time series without discretizing
the timeline while also making predictions regarding future
states when no observations are made. From an ordinary
differential equations (ODE) point-of-view, we give the
continuous model the ability to correct itself based on in-
stantaneous interventions. The resulting model is a natural
combination of ODE and RNN that has a notion of data
missing-ness and can adapt to irregular time intervals.

We compare several RNN variants and hybrid ODE-RNNs
in both one-step prediction and encoder-decoder settings,
and find that ODE-RNNs can perform better when the data
is sparse. We further investigate whether it is beneficial to
model the density of events using Poisson Process likelihood
along with the continuous hidden state.

2. Background
2.1. RNN with Exponential Decay

One natural way to handle missing data is incorporate the
time gaps ∆t = ti − ti−1 between the observed points into
the update function for the hidden state. Many works have
designed recurrent architectures that exponentially decay
the hidden state towards zero when no observations are
made. (Che et al., 2018; Cao et al., 2018; Rajkomar et al.,
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2018; Mozer et al., 2017). Thus, updates to the hidden state
at the next observation time becomes

hi = RNNCell(hi−1 · exp{−τ∆t}, xi) (1)

where τ is a (possibly learned) decay rate parameter.

2.2. Neural Ordinary Differential Equations

Neural ODEs (Chen et al., 2018) model a time series using
a continuous hidden state h(t), where h(t) is a solution of
the following differential equation:{

dh(t)
dt = f(h(t), t)

h(t0) = h0
(2)

The function f specifies the dynamics of the hidden state
and is parameterized by a neural network. The ODE is
solved using the call to a numerical ODE solver

h0, . . . , hN = ODESolve(f, h0, (t0, . . . , tN )) (3)

where (t0, . . . , tN ) are discrete time points where h(t) is
evaluated, though note that the neural ODE models h(t) as
a continuous function over time.

Chen et al. (2018) proposed using this neural ODE as part
of a variational autoencoder framework (Kingma & Welling,
2013) for learning sequence to sequence problems. In the
generative/decoder model, h0 is passed through an ODE
solver to produce estimates of the target sequence. How-
ever, because h(t) depends only on the initial state h0 (3),
h(t) cannot be changed based on multiple observations. To
get around this problem, Chen et al. (2018) resorted to a
standard RNN for the recognition/encoder model.

3. Method
3.1. An ODE-RNN Hybrid

Following the discussion in (Mozer et al., 2017), we first
note that an RNN with exponential decayed hidden state
implicitly defines a continuous hidden state that follows the
following ordinary differential equation:

dh(t)

dt
= −τh (4)

the solution of which is the pre-update term h0 ·exp{−τ∆t}
in (1). This differential equation is time-invariant, assumes
all dimensions decay with the same rate, and explicitly
assumes that the stationary point (i.e. the zero valued state)
is special.

Instead of continuously decaying the hidden state, we can
model the hidden state using a neural ODE. This gives
the model more flexibility in optimizing its behavior in
the absence of observations. Intuitively, exponential decay

can only model the loss of information whereas a learned
dynamics can arbitrarily adapt to the lack of observations,
which can be informative in itself.

Additionally, from the point-of-view of using an ODE to
represent time series, we allow the hidden state to instan-
taneously change in a discontinuous manner when condi-
tioned on discrete interventions. This can be done by using
standard RNN update cells.

This hybrid algorithm is summarized in Algorithm 1. We
use an ODE to perform the transition between the hid-
den states h′i = ODESolve(f, hi−1, (ti−1, ti)) and then
update the hidden state using a standard RNN update
hi = RNNCell(h′i, xi). Thus, the model provides a general
form of transition function that does not make any a priori
assumptions about the dynamics, and defines a continuous
hidden state in-between the observation times.

Algorithm 1 ODE-RNN

Input: Data points {xi}i=1..N

h0 = 0
for i in 1..N do
h′i = ODESolve(f, hi−1, (ti−1, ti))
hi = RNNCell(h′i, xi)

end for
oi = OutputNN(hi) for all i = 1..N
Return: {oi}i=1..N ;hN

3.2. Autoregressive Modeling with the ODE-RNN

Consider a series of observations {xi}i=0,...,N and the cor-
responding time stamps {ti}i=0,...,N on interval t ∈ [0, T ].
An autoregressive model makes a one-step-ahead prediction
conditioned on the history of observations. This can be
viewed as decomposing the joint density as a product of
conditionals, ie. p(x) =

∏
i p(xi|xi−1...x0). An immedi-

ate result of Algorithm 1 is the application of ODE-RNN
to modeling the conditional distributions p(xi|xi−1...x0).,
which we parameterize using the outputs of an ODE-RNN
{oi}i=1..N .

µ
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x(t)

tN t1 t0

~

t0 t1 tN
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hi

h1
h0
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ODE Solve(f, h0, (t0..tN ))ODE Solve(f,0, (tN ..t0))

Figure 2: A Latent ODE model that uses an ODE-GRU as
encoder and an ODE as decoder.
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3.3. Sequence to Sequence Learning with Latent ODEs

As autoregressive models are only trained on one-step-ahead
predictions, they don’t have the ability to represent long-
term dependencies and tend to memorize short-term effects
instead of global trends. This is often sufficient for densely
sampled data, but can be suboptimal when observations
are sparse. This motivates encoder-decoder style architec-
tures where a variable-length sequence is encoded into a
fixed-dimensional embedding, which is then decoded into a
second variable-length sequence (Sutskever et al., 2014).

Chen et al. (2018) proposed a variational autoencoder where
the generative model is based on solving an ODE. However,
they model the variational posterior using outputs from a
RNN encoder. The necessity of using RNN encoder comes
from the fact that (3) does not provide the ability to up-
date the latent state conditioned on observations. Building
on this encoder-decoder architecture, we enhance the en-
coder to have a continuously changing hidden state via the
ODE-RNN architecture. This results in an fully ODE-based
sequence-to-sequence model which we refer to as Latent
ODE and is illustrated in Figure 2. The parameters of the
latent distribution µ and σ are taken as the final hidden state
of an ODE-RNN. We train Latent ODE models using a stan-
dard objective for latent variable models, the evidence lower
bound (ELBO):

Eh0∼q(h0|xt0
,...,xtN

) [log p(xt0 , . . . , xtN ))]

−DKL[q(h0|xt0 , . . . , xtN )||p(h0)]
(5)

The stochastic latent state in Latent ODE provides a number
of desirable properties. The latent state y0 represents a sum-
mary of a discrete number of the encoded trajectory while
maintaining uncertainty in the underlying continuous trajec-
tory. Posterior inference allows to sample multiple possible
continuous trajectories conditioned on the observations.

3.4. Poisson process likelihoods

The fact that a measurement was made at a particular time
is often informative about the state of the system (Che et al.,
2018). In the ODE framework, we can use the continuous
latent state to parameterize the intensity of events using in-
homogeneous Poisson point processes (Palm, 1943), which
has the following log-likelihood.

log p(t0, . . . , tN |λ(t)) =

N∑
i=1

log λ(ti)−
∫ tN

t0

λ(t) dt (6)

Where the rate λ(t) is often approximated through discrete
steps (Mei & Eisner, 2017). However, this approach makes
the precise evaluation of

∫ tend

tstart
λ(t)dt a hard task. Using an

ODE framework, we can evaluate both the latent trajectory
and the rate λ(t) as a continuous function.
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Figure 3: Predictions from Latent ODE when conditioned
on a small subset of points. Though the model was only
trained with exactly 30 observations, its behavior in the
sparse-data setting correctly recovers the overall sinusoidal
behavior of the dataset and correctly recovers the full time
series when more observations are provided.

We augment the Latent ODE framework with a Poisson
Process over the observation times, where we parameterize
λ(t) as a function of h(t). The joint generative model is
specified as p(h0)p(t0, . . . , tN |h0)

∏N
i=0 p(xi|h0), where

the distributions are specified below.

p(h0) = Normal
(
h0; 0, I

)
(7)

{h(ti)} ← ODESolve
(
f, h0, (t0, . . . , tN )

)
(8)

p(t0...tN |h0) = PoissonProcess
(
t1...tN ;λ(h(t))

)
(9)

p(xi|h0) = Normal
(
xi;µ(h(ti)), σ(h(ti))

)
(10)

We can use a single call to the ODE solver (8) to get both the
Poisson intensity and observed values. Computing

∫
λ(t)dt

is also done as part of the ODE solving.

3.5. Different Observation Times & Sparse Features

With irregular time intervals, the time stamps can be dif-
ferent for every training example, and therefore are hard to
batch. We solve this issue by using the union of time stamps
from all the time series in the batch and solve an ODE over
the union of time points. This does not significantly increase
the time complexity of the ODE solver, as the adaptive time
stepping in ODE solvers is independent of the evaluation
time intervals. We use masks to ensure we only compute
the loss on observed data, which may include masking both
time values and features, similar to Che et al. (2018).

4. Experiments
The ODE-RNN model can be used with any hidden state
update formula for the RNNCell function in Algorithm 1.
Throughout our experiments, we use the Gated Recurrent
Unit (GRU) (Cho et al., 2014) update equation.
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Table 1: Test Mean Squared Error (MSE) on the MuJoCo dataset. “−” indicates an incomplete experiment.

Interpolation (% Observed Pts.) Extrapolation (% Observed Pts.)
Model 10% 20% 30% 50% 10% 20% 30% 50%

A
ut

or
eg RNN ∆t 2.45·10−2 1.71·10−2 1.25·10−2 0.79·10−2 7.26·10−2 6.79·10−2 6.59·10−2 3.06·10−1

RNN GRU-D − 1.37·10−2 1.10·10−2 − 8.86·10−3 − − −
ODE-GRU (Ours) 1.65·10−2 1.21·10−2 9.86·10−3 6.65·10−4 1.35·10−1 3.20·10−1 1.55·10−1 2.65·10−1

E
nc

-D
ec RNN-VAE 6.51·10−2 6.41·10−2 6.31·10−2 6.10·10−2 2.38·10−2 2.14·10−2 2.02·10−2 1.78·10−2

Latent ODE (RNN enc.) 2.48·10−2 5.78·10−3 2.77·10−2 4.47·10−3 1.66·10−2 1.65·10−2 1.48·10−2 1.38·10−2

Latent ODE (Ours) 3.60·10−3 2.95·10−3 3.00·10−3 2.85·10−3 1.44·10−2 1.40·10−2 1.18·10−2 1.26·10−2

4.1. Baselines

We compare our ODE-based models to the RNN-based
equivalents with different transition functions. In the class
of autoregressive models, we compare ODE-GRU to the
standard RNN. Among the encoder-decoder models, we
compare Latent ODE to the RNN variant where both the
encoder and decoder are recurrent neural nets. Where appli-
cable, we compare against RNNs with exponential decay.

4.2. MuJoCo: Physics Simulation

We created a physical simulation using “Hopper” model
from Deepmind Control Suite (Tassa et al., 2018). We
randomly sample the initial conditions of the hopper so that
the hopper is located above the ground with random initial
velocities. During the simulation the hopper rotates and falls
on the ground. We generated 10,000 sequences of 100 time
points, and randomly split the data into 80% for training
and 20% for test.

We construct interpolation and extrapolation tasks, where
during training we always subsample a small percentage
of the points, to test the behavior of models under sparse
observations. For evaluation, we compute the mean squared
error (MSE) on the full time series without subsampling.
Therefore, the models must learn to impute missing data in
addition to the task they are explicitly trained on.

Our ODE-GRU model outperforms autoregressive RNNs
on interpolation but have worse performance for extrapo-
lation. However, we don’t expect autoregressive models
to extrapolate very well as they were only trained for one-
step-ahead prediction. On the other hand, encoder-decoder
architectures have much better extrapolation performance.
We find that Latent ODEs can easily outperform standard
RNN-VAEs on both interpolation and extrapolation.

4.3. Physionet

We evaluate our approach on the PhysioNet Challenge 2012
(Silva et al., 2012) dataset of 8000 patients from Intensive
Care Unit (ICU). This dataset covers the first 48 hours after

Table 2: Test MSE on PhysioNet. Autoregressive models.

Model Interpolation (·10−3)

RNN ∆t 8.38

RNN (imputed input) 10.04

RNN (hidden state decay) 8.45

RNN GRU-D 7.53

ODE-GRU (Ours) 5.01

Table 3: Test MSE on PhysioNet. Encoder-decoder models.

Model Interpolation Extrapolation

RNN-VAE 9.35·10−3 7.19·10−3

Latent ODE (RNN enc.) 8.12·10−3 6.32·10−3

Latent ODE 8.75·10−3 6.33·10−3

Latent ODE + Poisson 7.90·10−3 6.32·10−3

the patient’s admission to ICU. There are 37 measurement
types in total. Different patients take different tests during
their stay in the hosital. As a result, the measurements are
sparse and irregularly sampled, and the observation times
for different measurements are not aligned. Most works use
a very coarse discretization of aggregated measurements
per hour (Che et al., 2018) but for our experiments, we
use a finer grid of six minutes. Tables 2 and 3 show that
ODE-enhanced models perform better than RNN baselines.

As the measurements are extremely sparse, we regularize
the model by fitting the rate of events in Physionet dataset
using a Poisson Process jointly trained with the Latent ODE
model.

As shown in table 3, modelling the intensity rate of events
together with improves the mean squared error on both inter-
polation and extrapolation tasks. Examples of fitted Poisson
rate are shown in the supplement. The learned rates vary for
different measurement types and, for some measurements,
even reflect sharp changes in the event density.
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Supplementary tables and figures
Table 4: Mean squared error on the toy dataset

Interpolation Extrapolation
% observed points 10 20 30 50 10 20 30 50

A
ut

or
eg

RNN ∆t 0.06081 0.04680 0.05822 0.04116 0.06172 0.06115 0.06891 0.05617
RNN (imputed input) 0.08558 0.06043 0.03922 0.04116 0.06095 0.07212 0.06541 0.05049
RNN (hidden state decay) 1.65891 0.05344 0.04974 0.03275 0.06172 0.06115 0.06891 0.05617
RNN GRU-D 2.35628 0.05997 0.04832 0.04116 0.06095 0.07212 0.06541 0.05049
ODE-GRU 0.05150 0.03211 0.02643 0.01666 0.06592 0.04774 0.10940 0.08000

VA
E RNN-VAE 0.07352 0.07346 0.07323 0.07304 0.20107 0.03710 0.07281 0.02871

Latent ODE (RNN enc) 0.06860 0.06764 0.02754 0.05721 0.04920 0.04807 0.01788 0.02703
Latent ODE (ODE enc) 0.07133 0.03144 0.05354 0.01717 0.05313 0.04427 0.03572 0.01388
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Figure 4: Reconstructions on toy dataset
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Figure 5: (a) Reconstructions on toy dataset from ODE-VAE. Observations are shown as points. Lines are reconstructions
for different samples of y0 in ODE-VAE model. (b) Corresponding latent state in the recognition model (first dimension).
The recognition model encodes the data backwards in time (from right to left). The lines show latent ODE path in-between
the encoded data points. The discontinuities between the paths show the update of the latent state using the observation at
that time point. The end of the end of the ODE path from the previous observation is shown as a small circle. The updated
state (and the start a new ODE path) is shown as cross. The shaded area shows the predicted standard deviation for the initial
latent state y0. Notice that the right-most point is similar for all four trajectories – only one data point was encoded, which
does not contain much information about the trajectory. As the encoding progresses (from right to left), the latent updated
generally become smaller.
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Figure 6: Reconstructed trajectories on Mujoco dataset
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Figure 7: Examples of learned poisson rate for different features in Physionet.


