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Abstract
Few-shot time-series classification aims to learn
a classifier on time series data, and the classi-
fier has a fast-adaptive ability that can catego-
rize unseen samples into a class which receives
very few labeled training samples. However, con-
ventional time-series classification algorithms fail
to tackle the few-shot scenario. Existing few-
shot learning methods are proposed to tackle im-
age or text data, and most of them are neural-
based models that lack interpretability. This paper
proposes Dual Prototypical Shapelet Networks
(DPSN), which not only train a neural network-
based model but also interpret the model from the
perspective of representative time series samples
and shapelets. In particular, the generated dual
prototypical shapelets consist of representative
samples that can mostly demonstrate the overall
shapes of all samples in the class and discrimi-
native partial-length shapelets that can be used
to distinguish different classes. We test DPSN
on 22 datasets and show that DPSN outperforms
state-of-the-art time-series classification methods,
especially when trained with few data.

1. Introduction
Training a classification model with very few labeled train-
ing samples, namely few-shot classification (Lake et al.,
2015). A few-shot classification model should be able to
categorize unseen samples to a class according to the gen-
eralized concepts and knowledge that is extracted from the
very few seen examples (training samples) in this class.

Time-series classification (TSC) has been broadly applied
in intelligent-based real-world applications, including heart
disease diagnoses (e.g., ECG200 data set), motion detection
(e.g., GunPoint data set), traffic analysis (e.g., Melbourne-
Pedestrian data set), etc.

However, to the best of our knowledge, seldom research has
been done in to solve the TSC problem under few-shot sce-
nario. It can be seen that with the development of domains
such as precision medicine, wearable devices, the require-
ments for few-shot TSC algorithm will increase (Busatto

et al., 2008; Sun & Yeh, 2017). An example is building a
personalized model for exercise. Although the biomarkers
are objective, an individual’s feeling is subjective. Which
means we need customer’s participation to interpenetrate
his data. In other word, labeling his data. However, an indi-
vidual user cannot produce much data, and labeling much
data would bring a negative user experience. Thus, few-shot
TSC would benefit those areas.

There are two challenges in few-shot TSC. Firstly, con-
ventional state-of-art TSC methods fail to tackle the few-
shot scenario. Secondly, existing few-shot learning meth-
ods (Chen et al., 2019; Snell et al., 2017; Motiian et al.,
2017) are not designed for TSC, and most of them are neural-
based models that lack interpretability. Thus, a reasonable
interpretation is critically important to convince end-users
that the trained few-shot model has a good generalization
capability.

This paper proposes a novel Dual Prototypical Shapelet
Network (DPSN) that can simultaneously solve the afore-
mentioned few-shot time-series classification problem and
address the model interpretability challenge. In particular,
the classification model is built on an end-to-end framework
that includes a KNN-based lazy learner, and a neural layer
which is applied to learn the metrics to transform time series
data into a new space. Dual interpretation of the classifier
will be generated by two different model interpretability
techniques. The first type of interpretation is a selected
time-series example, namely a representative shapelet, to
be used as a prototype to demonstrate the overall shape of
all the samples in a class. The other interpretation output is
a sub-sequence of a time-series example, namely discrim-
inative shapelet, that can be used to distinguish different
classes. The framework of DPSN is shown in Figure 1.

The papers main contributions are summarised as follows:

• The first study solves the few-shot time-series classifi-
cation task with neural-based methods.

• DPSN could reveal the overall shape of all the samples
in a class

• DPSN could reveal discriminative shapelet between
classes
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Figure 1. The framework of DPSN. The framework contains three components: 1) the feature extraction will transform Time series into
SFA feature and Shapelet feature; 2) The classification part will build a prototype of each class by aggregating SFA feature via a metric
learning neural network; 3) The dual interpretability has two-fold explanations including representative shapelet which was identified by
prototype from classification part, and discriminative shapelets which can be learned by combining information from shapelets feature and
prototype.

2. Related Works
2.1. Time series classification

From the University of California, Riverside (UCR) (Dau
et al., 2018) time series classification archive, COTE (Lines
et al., 2016), WEASEL (Schäfer & Leser, 2017), ST (Hills
et al., 2014) and BOSS (Schäfer, 2015) are top four state-of-
the-art algorithms for TSC. Due to the reason that COTE is
an ensemble learning method, we do not consider it. Thus,
We choose the other three as our baseline to compare accu-
racy and precision.

Besides accuracy, ST is also remarkable for its interpretabil-
ity. Thus, we compared our interpretability with ST.

2.2. Few-shot Learning

Few-shot learning aims at training a model with very few
labeled training samples. In computer vision and nature
language processing domains, many solutions has been in-
troduced to overcome the few-shot problem. (Chen et al.,
2019; Finn et al., 2017) aims to learn the fast adaptation
ability to new tasks with few training samples. (ZHANG
et al., 2018; Dixit et al., 2017) use generative models to
create more training samples to offset the few-shot problem.

However, those existing few-shot learning algorithms are
designed for image or text classification related tasks. Thus
we need to mitigate them to TSC.

2.3. Interpretability for Neural-based Model

Interpretability is critically important for neural-based mod-
els due to its black-box nature. Conventional model (Fisher
et al., 2018; Kim et al., 2016; Koh & Liang, 2017) inter-

pretation analyses the models parameters and outcomes to
generate an interpretation for the model.

Gradients analysis is also important for model interpreta-
tion, e.g. Layer-Wise Relevance Propagation (Bach et al.,
2015), and gradient sensitivity analysis (Montavon et al.,
2018). Many research work has tried to modify the existing
DNN/CNN/RNN-based or attention-based neural model to
generate intermediate information for model interpretation.

3. Dual Prototypical Shapelet Networks
Following most recent time series learning works (Zhang
et al., 2016; Schäfer & Leser, 2017; Bagnall et al., 2017), we
learn from K classes training time series T = {T1, ..., TN}
annotated by labels Y = {y1, ..., yN}. We undertake classi-
fication in more challenging scenarios where the number of
training samples for every class is reduced to 2, i.e., ‖T k‖=2.
We do not test when ‖T k‖=1 for it makes no sense to learn
a prototype from one sample without prior knowledge. The
overall framework of the proposed DPSN method is shown
in Figure 1. The whole procedure is divided into two stages:
feature extraction using SFA (Sec. 3.1) and classification
using a prototypical network (Sec. 3.2).

3.1. SFA Feature Extraction

We followed this paper (Schäfer, 2015) to transform the
time series to dense SFA word histogram features i.e.,

T → X = {x1, ...,xN} , for classification.

3.2. Prototypical Network

We use a prototypical network to solve the few-shot time
series classification problem. The prototype network is a
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KNN based classifier, which classifies samples to the class
with the nearest prototype. Prototype Ck for class k is
defined by the feature average of X k:

Ck =
1

‖X k‖
∑
x∈Xk

fφ(x), (1)

where X k denotes SFA features of all training samples in
class k, x is SFA feature for a time series and f(·) is the
feature extractor parameterised by φ.

Classification result is calculated as a softmax over all
classes k′ ∈ Y using euclidean distance between a sam-
ple and every prototypes:

Pr(y = k|x) = exp(−‖fφ(x)−Ck‖2)∑
k′ exp(−‖fφ(x)−Ck′‖2)

(2)

.

The cross entropy lossL of data sampled from the distribu-
tion D can be formulated as:

L = E(x,y)∼D − log Pr(y|x;φ) (3)

3.3. Interpret model using representative shapelets

We choose a representative example by finding the time
series example which is the nearest neighbor of the proto-
type in space φ. This representative sample is the prototype
approximation that can demonstrate the overall shapes of
all supportive samples in the class. These representative
shapelets for classes are a type of explanation for the trained
DPSN classifier.

Given a class k, the prototype is generated by simply cal-
culating the weighted sum of all supportive samples in the
class, and the representative sample is selected using the
following equation

Ti, i = argmin
i
F (fφ(xi),Ck) (4)

where F is the distance function which could be Euclidean
distance or another, e.g. cosine dissimilarity, or KL diver-
gence. The distance calculation is based on the represen-
tation in space φ. Thus, in our work, we use Euclidean
distance

3.4. Interpret model using discriminative shapelets

Given a class, its discriminative shapelet should be 1) exists
in every same-class sample, and 2) does not exist in any diff-
class sample. We denote the representative sample by T and
extract many sub-sequence T i using a slider window. The
shapelet of T i is Si, discriminative shapelets are denoted as
S.

Given the class k, its best or optimal discriminative shapelet
Sk can be found by maximising the likelihood in Equation 5.

Sk = argmax
i
Lo(S

i, T ,Yk) (5)

where T and Yk combine to product a bi-classification
dataset where the positive class is the given class k and the
negative class is all other classes. The likelihood function
needs to be aligned to the aforementioned two requirements
of discriminative shapelets. In particular, we measure the
likelihood using f-test as demonstrated in Equation 6.

Lo =
between class variability

within class variability
(6)

where the large value of ”between-class variability” indi-
cates that the selected shapelet does ”not exist” in the diff-
class samples, and the small value of the ”within-class vari-
ability” indicates that the shapelet is likely to ”exist” in the
same-class samples. The shapelet has the largest f-test value
is the discriminative shapelet.

The ”between-class variability” measures the distance be-
tween different classes using the following equation.∑K

i=1Ni ∗ (di − d)2

K − 1
(7)

where Ni is the number of samples i the i − th class, di
denotes the mean value of all samples in the i− th class, d
denotes the overall mean of all classes, and K is the number
of classes that is 2 in the bi-classification scenario.

The ”within-class variability” calculates the variance of all
the distance-values in the same class using the following
equation. ∑K

i=1

∑Ni

j=1(dij − di)2

N −K
(8)

As discussed, the d is the value to estimate the likelihood. d
is the distance between a shapelet and a time-series example.
In particular, a time-series T will be transformed to a set of
subsequences T i that is the same length as shapelet S. As
we expect to check whether or not the shapelet exists in the
time-series, distance dST is the minimal distance between
S and the set of subsequences T i. as calculated by Equation
9.

dST = min
i=1..ns

F (T i, S) (9)

where F is the distance function, ns is the number of gener-
ated sub-sequences from time-series T .

4. Experiments
4.1. Experiment Setup

To, simulate few-shot scenario, we select datasets with few
training samples. To easily visualize and interpret the time-
series, we select datasets with short time series. To fulfill
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these two requirements, we choose the top 1/6 of the 128
datasets with the shortest total length of all time series sam-
ples (the number of training sample * the length of the
dataset). In total, we choose 22 datasets.

Those datasets have training dataset and test dataset. We
re-sample from training dataset to simulate the few-shot
scenario. we set the sample ratio number from 0.1 to 0.9
with the step of 0.1. Thus, for one UCR dataset, we can build
9× 10 few-shot datasets from it. We will do an experiment
on each few-shot dataset.

Our method uses SFA feature and an optimized shapelets
method. Thus, we compare with the state-of-art methods
which uses SFA feature (WEASEL BOSS) or shapelets
(ST).

The transformation network has two fully connected lay-
ers(hidden layer to 256 and the output dimension to 64) The
the SFA feature was same setting with (Schäfer, 2015) The
setting for prototypical neural network is follows: Adam to
train our model with the learning rate of 0.002, the learning
rate decay of 1e-5, the epochs number of 1000, and the
momentum of 0.7. We anonymously public our code here1.

4.2. Experiment Result

4.2.1. EXPERIMENT RESULT OF CLASSIFICATION

Due to the large size of results, we can only list the average
result in this paper, and the full result is here 2. In Figure
2, the average accuracy shows that when we only have few
samples, DPSN could outperform other baselines. From
the average accuracy STD perspective, our method is more
robust than other baselines.

It should be noticed that when the sample ratio is 0.1 the
STD of WEASEL are better than us and the average ac-
curacy are not of much difference. This is because at this
sample ratio, the WEASEL will not work in some dataset
for the algorithm needs at least two training samples to run.
Thus, the result of WEASEL is not the actual result.

4.2.2. INTERPRETABILITY OF DPSN

Due to the page limitation, we could only show the inter-
pretability result of one dataset. The other results are here 3.
We choose the BME dataset for it a handcraft dataset which
is easy for people to understand without background knowl-
edge. For representative shapelets, as it is shown in Figure
3, we can see that most time series in class 0 and class 2
have smaller values in the middle. This kind of pattern is

1https://github.com/IJCAI2019-985/DPSN
2https://github.com/IJCAI2019-985/DPSN/blob/master/

results/result.txt
3https://github.com/IJCAI2019-985/DPSN/blob/master/

SFA Python-master/test/image result/

similar to our representative shapelets. In other words, the
data we choose is more representative of its class.

For discriminative shapelets, the ST does not consider the
location of shapelet. Thus, it cannot find the high spike in
the third image as DPSN. From the interpretability result,
we could know that the difference between Class 0 and Class
2 is at the end of the time series. The character of class 1
is it’s high value in the middle and not spike (which can be
seen by the representative shapelets).

Figure 2. The average accuracy and variance over 22 datasets. Our
algorithm outperforms three baselines with lower variance when
using few data (Sample ratio ≤ 0.4).

Figure 3. The left image is the visualization of BME dataset. Im-
ages in the middle are the DPSN result. The blue line is the
representative training sample for each class. The red line is the
discriminative shapelet. The left images are the result of ST. The
orange line is shapelet picked by ST. The blue line is which sample
those shapelets were learned.

5. Conclusions
We propose a novel Dual Prototypical Shapelet Networks
for few-shot time-series classification. To the best of our
knowledge, we are the first to solve time series classification
under the scenario of few-shot using neural network-based
model. In experiments, DPSN ourperforms three state-of-
the-art baselines in 22 datasets especially when the amount
of data significantly decreases. Moreover, we also interpret
DPSN from two perspectives: representative sample and
discriminative shapelets.

References
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller,

K.-R., and Samek, W. On pixel-wise explanations for

https://github.com/IJCAI2019-985/DPSN
https://github.com/IJCAI2019-985/DPSN/blob/master/results/result.txt
https://github.com/IJCAI2019-985/DPSN/blob/master/results/result.txt
https://github.com/IJCAI2019-985/DPSN/blob/master/SFA_Python-master/test/image_result/
https://github.com/IJCAI2019-985/DPSN/blob/master/SFA_Python-master/test/image_result/


Few-shot Time-series Classification with Dual Interpretability

non-linear classifier decisions by layer-wise relevance
propagation. PloS one, 10(7):e0130140, 2015.

Bagnall, A., Lines, J., Bostrom, A., Large, J., and Keogh, E.
The great time series classification bake off: a review and
experimental evaluation of recent algorithmic advances.
Data Mining and Knowledge Discovery, 31(3):606–660,
2017.

Busatto, G. F., Diniz, B. S., and Zanetti, M. V. Voxel-based
morphometry in alzheimers disease. Expert review of
neurotherapeutics, 8(11):1691–1702, 2008.

Chen, W.-Y., Liu, Y.-C., Kira, Z., Wang, Y.-C. F., and Huang,
J.-B. A closer look at few-shot classification. In ICLR,
2019.

Dau, H. A., Keogh, E., Kamgar, K., Yeh, C.-C. M., Zhu, Y.,
Gharghabi, S., Ratanamahatana, C. A., Yanping, Hu, B.,
Begum, N., Bagnall, A., Mueen, A., and Batista, G. The
ucr time series classification archive, October 2018. https:
//www.cs.ucr.edu/∼eamonn/time series data 2018/.

Dixit, M., Kwitt, R., Niethammer, M., and Vasconcelos,
N. Aga: Attribute-guided augmentation. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pp. 1126–1135. JMLR. org, 2017.

Fisher, A., Rudin, C., and Dominici, F. Model class re-
liance: Variable importance measures for any machine
learning model class, from the rashomon perspective.
arXiv preprint arXiv:1801.01489, 2018.

Hills, J., Lines, J., Baranauskas, E., Mapp, J., and Bagnall,
A. Classification of time series by shapelet transformation.
Data Mining and Knowledge Discovery, 28(4):851–881,
2014.

Kim, B., Khanna, R., and Koyejo, O. O. Examples are not
enough, learn to criticize! criticism for interpretability.
In Advances in Neural Information Processing Systems,
pp. 2280–2288, 2016.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In Proceedings of the 34th
International Conference on Machine Learning-Volume
70, pp. 1885–1894. JMLR. org, 2017.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266):1332–1338, 2015.

Lines, J., Taylor, S., and Bagnall, A. Hive-cote: The hier-
archical vote collective of transformation-based ensem-
bles for time series classification. In 2016 IEEE 16th
International Conference on Data Mining (ICDM), pp.
1041–1046. IEEE, 2016.

Montavon, G., Samek, W., and Müller, K.-R. Methods
for interpreting and understanding deep neural networks.
Digital Signal Processing, 73:1–15, 2018.

Motiian, S., Jones, Q., Iranmanesh, S., and Doretto, G.
Few-shot adversarial domain adaptation. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neu-
ral Information Processing Systems 30, pp. 6670–6680.
Curran Associates, Inc., 2017. URL http://papers.nips.
cc/paper/7244-few-shot-adversarial-domain-adaptation.
pdf.
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Schäfer, P. and Leser, U. Fast and accurate time series classi-
fication with weasel. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management,
pp. 637–646. ACM, 2017.

Snell, J., Swersky, K., and Zemel, R. Prototypical networks
for few-shot learning. In Advances in Neural Information
Processing Systems, pp. 4077–4087, 2017.

Sun, J. C.-Y. and Yeh, K. P.-C. The effects of attention
monitoring with eeg biofeedback on university students’
attention and self-efficacy: The case of anti-phishing
instructional materials. Computers & Education, 106:
73–82, 2017.

Zhang, Q., Wu, J., Yang, H., Tian, Y., and Zhang, C. Unsu-
pervised feature learning from time series. In IJCAI, pp.
2322–2328, 2016.

ZHANG, R., Che, T., Ghahramani, Z., Bengio, Y., and
Song, Y. Metagan: An adversarial approach to few-shot
learning. In Bengio, S., Wallach, H., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 31,
pp. 2365–2374. Curran Associates, Inc., 2018.

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
http://papers.nips.cc/paper/7244-few-shot-adversarial-domain-adaptation.pdf
http://papers.nips.cc/paper/7244-few-shot-adversarial-domain-adaptation.pdf
http://papers.nips.cc/paper/7244-few-shot-adversarial-domain-adaptation.pdf

