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Abstract
We propose a method for performing multi-step
temporal prediction of spatial traffic demand. The
method is based on encoding the recent history
with a convolutional GRU, obtaining a hidden
state vector that is used to initialize a second
convolutional GRU. The second GRU is condi-
tioned on time-matching historical data, after be-
ing adapted to match the scale of the recent history.
Our fully convolutional method is much more effi-
cient than the recent methods in the field of traffic
prediction and does not need additional data, such
as weather or public holiday data. The method
outperforms the literature methods by a sizable
margin, especially when predicting further into
the future.

1. Introduction
The prediction of future spatiotemporal data is a ubiquitous
task with very diverse applications, including weather fore-
casting, agricultural planning, social activity anticipation,
and brain-machine interfaces.

In this work, we focus on the problem of predicting demand
for public transportation, as well as future drop-off events.
Due to the growing popularity of ride-hailing services such
as Uber and Didi Chuxing, where accurately anticipating
demand can lead to better service at a reduced cost, this
problem has attracted considerable attention.

The passengers’ traffic is known to be influenced by factors
such as public holidays and the weather. However, in order
to make our method as generic as possible, we focus on the
problem of predicting the future demand based solely on
the history of this demand. Two forms of historical data are
considered by us as most relevant: (i) the very recent history,
and (ii) the historical average for the same time of the day
at the same day of the week. To account for the variation
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between the weeks, we scale the second component in ac-
cordance with the ratio between the total activity in recent
history and the total activity, for the matching day and time,
on an average week.

Our method makes use of dilated convolutions (Yu &
Koltun, 2015) and of convolutional gated recurrent units
(GRUs) (Nicolas et al., 2015), which are a specific type of a
Recurrent Neural Network (RNN). An RNN encoder first
represents the recent history as the hidden state of a first
GRU. Then, a second GRU is initialized by this representa-
tion and runs on the historical data of the time frames that
are predicted, up to the end of the prediction window.

We compare our method to the recent deep learning meth-
ods, as well as to classical time prediction methods, using
all relevant datasets we could obtain. Our results indicate
a clear advantage in performance for predicting the next
time step, which is the main focus of the current literature.
When predicting further into the future, the performance
gap becomes significantly larger.

2. Related Work
Traffic prediction has been the topic of many studies and
a wide array of methods have been employed over the
years. Classical approaches used statistical methods, such
as autoregressive integrated moving average (ARIMA)
(M. Van Der Voort & Watson, 1996; Williams & Hoel,
2003; Q. T. Tran & Trinh, 2015), Kalman filter (Okutani
& Stephanedes, 1984; Y.-J. Wu & Yang, 2016) as well as
non-parametric approaches such as K-NN (Davis & Ni-
han, 1991), historical Average (HA), vector autoregression
(VAR) and Gaussian process based (Kamarianakis & Prasta-
cos, 2005; S. Thajchayapong & Garcia-Trevino, Sep. 2010).
These methods usually focus on predictions in a narrow
region, such as a road segment, or several such segments,
and usually cannot take into account complex non-linear
spatiotemporal dependencies, and are, therefore, not very
well suited for the task of citywide prediction that is the
focus of this work.

In recent years, the go-to tool for problems involving non-
linear relations has been Artificial Neural Networks (ANNs),
that have a proven track record in dealing with non-linear
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temporal or sequence predictions (van den Oord et al., 2016),
as well as complex non-linear spatial dependencies (He
et al., 2016). In light of this success, there have been many
attempts to use ANNs for various traffic prediction tasks,
such as speed (X. Ma & Wang, 2017), congestion condition
(X. Cheng & Xu, Jul. 2018), traffic flow in particular roads
or areas (Y. Lv & Wang, Apr. 2015; Manoharan, 2016;
R. Yu & Liu, 2017; S. Du & Horng, 2018), and closely
related to our work, citywide traffic flow prediction (J. Ke
& Chen, Dec. 2017; Zhang et al., 2016; Wang et al., 2017;
Zhang et al., 2017; Yao et al., 2018; 2019; Li et al., 2018;
Zhou et al., 2018; Chen et al., 2018; Du et al., 2019).

Most of these works, except for (Zhou et al., 2018), also
utilize external data, such as weather, holidays and major
city events, to improve their accuracy, but our method man-
ages to outperform these methods while relying solely on
demand data. Another important difference is that most of
these methods are designed for short-term prediction, and
are not well-suited for multi-step prediction. To predict
further into the future, they would need to feed their output
back in, causing the prediction to drift and result in deterio-
rating performance. In this regard, (Zhou et al., 2018) were
among the first to propose a method that is geared toward
maintaining performance in a multi-step prediction setting.
To this end, they have borrowed the concept of the sequence
encoder-decoder from the different spatiotemporal task of
video-frame prediction (Nitish Srivastava & Salakhudinov,
2015), where a separate LSTM (Hochreiter & Schmidhuber,
1997) decoder is employed for the purpose of predicting
multiple future frames. In a similar manner, we use two
convolutional GRU (Nicolas et al., 2015) to serve as the
encoder and decoder. This still leaves open the question
of the input to the decoder during the prediction. Using
previous outputs as inputs to the decoder, or using no input
at all would lead to similar performance degradation as with
the other methods. A key point here is that unlike video
prediction, traffic prediction can utilize inherent regulari-
ties that drive the periodic behavior of traffic demand. In
(Zhou et al., 2018) attention over representative demands
was used in an attempt to tap into those regularities. How-
ever, this approach does not take into account the periodic
behavior of traffic demand. We take a different approach,
using the adapted historical average as input, thereby explic-
itly capturing coarse spatiotemporal regularities, leaving the
fine-tuning to the decoder.

3. Method
Following previous work (Zhang et al., 2016; Yao et al.,
2018; Zhou et al., 2018), we define the problem of pre-
dicting pickups and drop-offs as a regression problem over
two spatial grid maps. We partition an area of interest
(e.g. a city) into regions using a rectangular M × N

grid based on latitude and longitude coordinates, where
M = latmax−latmin

D and N = lonmax−lonmin

D , with D be-
ing the length of each grid cell. Smaller values of D lead
to more fine-grained predictions, at the expense of a certain
increase in computational cost, dependent on the chosen
model. We denote the set of regions comprising the grid
map as G = {gij | i ∈ [1,M ], j ∈ [1, N ]}.

Given a set of passenger trips starting from some point ps
at time ts, and arriving at pe, at time te, let us define the
number of pickups and drop-off in region gij in the time
interval ([t, t+ 1) respectively as:

xpickup
ij,t = |{(ps, ts) | ps ∈ gij , ts ∈ [t, t+ 1)}|

xdropoff
ij,t = |{(pe, te) | pe ∈ gij , te ∈ [t, t+ 1)}|

where | · | is the set’s cardinality. Combining the pickup map
xpickup
ij,t and the drop-off map xdropoff

ij,t , we getXt ∈ R2×M×N ,
which we will refer to as the demand tensor.

Given a set of T recent demand tensors X1...T , we would
like to predict the demand for next R steps XT+1...T+R.

Our model follows a general encoder-decoder framework.
The encoder consists of several dilated convolutional layers,
with the dilation exponentially growing with depth. Us-
ing increasingly dilated convolution increases the receptive
field of consecutive convolutional layers, allowing the net-
work to learn relationships between spatially distant regions.
Increasing the receptive field can also be achieved using
strided convolutions, as was done by Zhou et al. (2018),
or using a pooling operation. However, these come at the
expense of spatial resolution.

Following the convolutional layers, the resulting feature
maps for each of the recent time step 1...T , are fed into an
RNN, consisting of one or more layers, in order to extract
the temporal demand dynamics. To preserve spatial corre-
spondence between regions, we use a convolutional RNN,
that is similar to a regular RNN, but uses convolutional op-
erations instead of multiplication. Specifically, we use L
layers of convolutional GRUs (Nicolas et al., 2015), that
have been shown to yield similar performance to LSTMs,
while using less memory (Chung et al., 2014). A convolu-
tional GRU is governed by the following equations:

zt = σ(Wz ∗Xt + Uz ∗ ht−1),

rt = σ(Wr ∗Xt + Ur ∗ ht−1),

h̄t = tanh(W ∗Xt + U ∗ (rt � ht−1)),

ht = (1− zt)ht−1 + zth̄t,

where ∗ denotes a convolution operation, � denotes
the Hadamard product, σ is the sigmoid non-linearity,
W,Wz,Wr and U,Uz, Ur are learnable convolutional ker-
nels. ht is the hidden state, and has the form of a three-
dimensional tensor in order to preserve spatial relationships.
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rt is the reset gate that controls how much the current hid-
den state will affect the candidate next hidden state, h̄t. zt
is the update gate that determines the relative importance
of the previous hidden state and the candidate new hidden
state. A multi-layered convolutional GRU uses the hidden
state of layer l, hlt, as the input to layer l + 1.

To predict a single step forward, the encoder output is often
used directly, foregoing a decoder RNN (Yao et al., 2018;
2019; Du et al., 2019). While these methods work well for
a single step, when trying to predict multiple steps, they
rely on their previous outputs, leading to predictions quickly
drifting from the ground truth and to deteriorating perfor-
mance. Therefore, to predict farther into the future, we use
a decoder RNN. The decoder RNN is fed not with predic-
tions, which will cause a gradually increasing drift, but with
modified historical averages.

The historical averages Ht ∈ R2×M×N are computed per
each day of week and time of day, based on the entire train-
ing data. Before being fed into the network, the historical
averages for the next time steps are adapted, based on the the
recent demand history. We use a simple adaptation, scaling
the historical average by the recent global demand. Let the
total demand in the recent history be defined as

Sg =
1

2MNT

∑
t∈[1,T ],k∈[1,2],i∈[1,M ],j∈[1,N ]

Xt(k, i, j).

Similarly, we define the global historical demand Sh by
averaging, across the four dimensions (t,k,i,j), the T histor-
ical averages Ht matching the times of the recent history
window:

Sh =
1

2MNT

∑
t∈[1,T ],k∈[1,2],i∈[1,M ],j∈[1,N ]

Ht(k, i, j).

The adapted historical average H̄t, which is a single tensor
of size 2×M×N for every t, is then obtained by multiplying
the historical average of times T + 1 ≤ t ≤ T + R by
the global scaling H̄t =

Sg

Sh
Ht. Although this method

of adaptation is very simple and computationally cheap,
it captures the inherent demand regularity well, and the
adapted historical average is a strong predictor in its own
right, as can be seen in Sec. 4; furthermore, its error can
remain stable for many steps forward. This provides the
decoder with a strong baseline to work off of.

We, therefore, use the adapted historical average as input to
the decoder at each prediction time step, after processing it
using a similar CNN as the one used in the encoder. The
decoder further mirrors the architecture of the encoder, using
L layers of convolutional GRU, initialized using the last
state of the encoder, after the latter has consumed the recent
demands t = 1..T , see Fig. 1.

Figure 1. Our architecture for T = R = 10. The demand of the
recent history is fed to an encoder (left column). The hidden states
of the encoder’s convolutional GRU layers are then used to initial-
ize the hidden states of the matching layers of the convolutional
GRU of the decoder (right column). The decoder’s convolutional
GRU receives as input the adapted historical averages.

It has been demonstrated repeatedly, following He et al.
(2016), that neural networks are significantly better at learn-
ing residuals, rather than absolutes. The output of the de-
coder’s convolutional GRU is, therefore, treated as a resid-
ual, by summing it with the output of the previous steps,
followed by a ReLU non-linearity. Finally, the result is fed
into a CNN that is the mirror image of the encoder CNN,
performing dilated convolutions with decreasing dilations.

4. Experiments
We test our method using three real-life datasets: (i)
BikeNYC1 is a dataset compiled from 5.5M Citi Bike bicy-
cle rentals and returns between Apr. 1st and Sep. 30th 2014,
where the last ten days are used for testing and the rest for
training. The data is accumulated in one-hour intervals into
a 16 x 8 grid, with each cell being approximately 1km x
1km in size. (ii) YellowTaxiNYC2 is a dataset of 1B NYC
yellow taxi pickups and drop-offs between 2009 and 2015,
where 2015 is used for testing and the rest for training. The
data is accumulated in one-hour intervals into a 64 x 64
grid, with each cell being approximately 5km x 5km in size.
(iii) BJ Taxi is a dataset of 240M taxi pickups and drop-offs
in Beijing in the periods Jul. 1st – Oct. 30th 2013, Mar.

1www.citibikenyc.com/system-data
2www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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1st – Jun. 30th 2014, Mar. 1st – Jun. 30th 2015, and Nov.
1st 2015 – Apr. 10th 2016. The last four weeks are used
for testing and the rest for training. The data is given in
30-minute intervals on a 32 x 32 grid.

In the encoder, we use four convolutions with 8, 16, 64,
and 128 kernels, dilated respectively by 1, 2, 4, and 8, us-
ing padding to keep the spatial size constant, followed by
two layers of convolutional GRU with 128 input and output
channels. For the decoder, we use two layers of convolu-
tional GRU that are the same as in the encoder, followed by
four layers of transposed convolution with 128, 32, 8, and
2 kernels, dilated respectively by 8, 4, 2, and 1. We use a
weekly historical average, meaning the average demand for
each time of the week (e.g. Tuesday 8AM-9AM). We tie
the weights of the convolutional layers of the encoder and
the decoder, that precede the two convolutional-GRUs, i.e.,
the first four layers of the encoder and the decoder employ
the same weights.

In all experiments, we used ten recent time steps (T =
10) to predict the next step or steps. The RMSE loss√

1
R

∑T+R
t=T+1(Xt − X̂t)2 is minimized during training,

without any regularization term. We train two models per
dataset, one with R = 1 and one with R = 10. The model
trained for R = 1 is slightly better that the other model for
predicting the next time step and significantly worse, when
evaluated on the R = 10 scenario (the two models drift
apart around the sixth time step).

The models were trained on a single NVidia GeForce GTX
1080 Ti GPU. Adam optimization (Kingma & Ba, 2015)
was used with a learning rate of 2e-4, and mini-batches of
size 16. The implementation was written using pytorch.

We compare our method to classic time series regression
methods: (1) Historical Average (HA): each grid point is
predicted based on the historical average for that point at
the same time of the week (e.g. Tuesday 9AM-10AM),
(2) Adaptive Historical Average (AHA): similar to HA,
but each point is scaled by the average of the values
in the recent time divided by the average of the histori-
cal average for the same period, and (3) AutoRegressive
Integrated Moving Average (ARIMA). Additionally, we
compare with recent neural network based methods: (4)
DeepSD (Wang et al., 2017), (5) Deep spatiotemporal Resid-
ual Networks (ST-ResNet) (Zhang et al., 2017), (6) Deep
Multi-View Spatial-Temporal Network (DMVST-Net) (Yao
et al., 2018), (7) Attention Convolutional LSTM (AttCon-
vLSTM) (Zhou et al., 2018), (8) Diffusion Convolutional
RNN (DCRNN) (Li et al., 2018), (9) Deep Irregular Convo-
lutional Residual LSTM (DST-ICRL) (Du et al., 2019), and
(10) MST3D (Chen et al., 2018).

We note that training our method is much more efficient than
training AttConvLSTM, due to the greatly reduced number

Table 1. Comparison of different methods for a single time step
prediction, showing RMSE scores. 1Chen et al. (2018) reported
in-flow and out-flow separately, the statistics given are the average
of the two. 2Zhou et al. (2018) did not report results for one time
step; the first two results are taken from (Du et al., 2019), the
third is by our reimplementation. 3US = uniform sampling. IS =
importance sampling.

METHOD BIKENYC TAXIBJ TAXINYC

HA 5.94 30.67 -
AHA 4.79 19.20 -
ARIMA 10.07 22.78 -
DEEPST 7.43 18.18 -
ST-RESNET 6.33 16.89 -
STDN 6.25 16.61 -
MST3D1 5.81 16.05 -
ATTCONVLSTM2 7.09 17.41 13.47
DST-ICRL (US)3 5.93 14.77 -
DST-ICRL (IS)3 5.77 14.07 -
OURS 4.12 13.66 10.88

Table 2. Comparison of RMSE for different methods for the pre-
diction of ten time steps into the future. 1Zhou et al. (2018) did not
report results for TaxiBJ, and this result is by our reimplementation.

METHOD BIKENYC TAXIBJ TAXINYC

HA 6.92 31.90 32.42
AHA 6.60 22.19 15.90
ST-RESNET 10.58 - 43.97
ATTCONVLSTM1 7.76 22.79 26.91
OURS 5.81 18.45 15.78

of parameters. Among many architectural differences, this
baseline method includes multiple fully connected layers,
while our methods relies only on convolutional layers.

The results for predicting a single future time step are given
in Tab. 1. As can be seen, our method significantly outper-
forms the existing literature methods and achieves state-of-
the-art on all three datasets. This is achieved using only pure
in-flow and out-flow, while almost all other neural network
based models (except AttConvLSTM) utilize one or more
forms of external data, such as local events and the historical
weather.

In the second set of experiments, we make predictions for
multiple future time steps. Specifically, following (Zhou
et al., 2018), we predict the next 10 time steps. As can be
seen in Tab. 2, our model’s performance surpasses the other
models, often with a larger margin than for the first time
step. This strengthens our claim that using the historical
average helps stabilize the future predictions, by providing
a strong prior for the network to use as a baseline. This
prior is independent of previous predictions, as well as on
the number of prediction steps taken.
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