
Extending Deep Learning Models for Limit Order Books to Quantile
Regression

Zihao Zhang 1 Stefan Zohren 1 Stephen Roberts 1

Abstract
We showcase how Quantile Regression (QR) can
be applied to forecast financial returns using Limit
Order Books (LOBs), the canonical data source
of high-frequency financial time-series. We de-
velop a deep learning architecture that simultane-
ously models the return quantiles for both buy and
sell positions. We test our model over millions
of LOB updates across multiple different instru-
ments on the London Stock Exchange. Our results
suggest that the proposed network not only deliv-
ers excellent performance but also provides im-
proved prediction robustness by combining quan-
tile estimates.

1. Introduction
Traditional time-series modelling is often dominated by
Markov-like models with stochastic driving terms such as
the vector autoregressive model (VAR) (Zivot & Wang,
2006). These models make strong parametric assumptions
to the functional form of the predictive model (in particular
the AR family) and also require the target time-series to
be stationary. However, financial price (and volume) rarely
conform to these assumptions and even returns, the first
order differences of prices, are rarely stationary (Cont &
Nitions, 1999). Deep learning has gained popularity in finan-
cial modelling since they are not constrained by the above
assumptions (see (Tsantekidis et al., 2017a;b) for some ex-
amples). Modern deep learning architectures also allow one
to tailor the loss function, as is demonstrated in (Lim et al.,
2019) where the Sharpe ratio is directly maximised as a cost
function.

Deep networks often require a large number of observations
to calibrate weights and this property fits nicely with finan-
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cial applications that utilise high frequency microstructure
data. Nowadays, billions of market data are generated ev-
eryday and most of them are recorded in Limit Order Books
(LOBs) (Parlour & Seppi, 2008; Bouchaud et al., 2018). A
LOB is a record of all unmatched orders of a given instru-
ment in a market comprising of levels at different prices
containing resting limit orders to sell and buy, also called
ask and bid orders. A bid (ask) order is an order to buy
(sell) an asset at or below (above) a specified price. We can
consider LOBs as the most granular financial data as a LOB
represents the demand and supply of a given instrument at
any moment in time.

In our previous works (Zhang et al., 2018; 2019), we demon-
strate that deep learning models can deliver improved pre-
dictive performance, in comparison with standard methods
when modelling LOB data. One of the important contribu-
tions of deep learning is the ability to automate the process
of feature extraction. In the work of (Sirignano & Cont,
2018) as well as our own, it is demonstrated that such mod-
els can extract representative features that are related to the
demand and supply in the order book. Given billions of
market quotes from LOBs, this approach has proved to be
more effective than algorithms that rely on hand-crafted
features. Features derived from a human-centric understand-
ing of a process (such as “moving-average crossover”) do
not guarantee best performance with respect to the target
function, as is also seen in (Lim et al., 2019). Further, in
complex non-stationary environments such as finance, it is
far from trivial to select informative features by hand, even
after years of work in the industry.

In this work, we utilise deep neural networks and Quantile
Regression (QR) (Koenker & Hallock, 2001) to model the
returns from LOBs. QR is particularly useful for financial
time-series as it models the conditional quantiles of a re-
sponse. Returns are in general heterogeneous, highly peaked
and have fat tails compared to a normal distribution (Cont
& Nitions, 1999). A point estimation is really not enough
to describe the full distribution of returns and we can ob-
tain considerably more information by estimating multiple
quantiles. We regard Quantile Regression as able to provide
valuable, non-stationary, extra information regarding risk
exposure.
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Figure 1. Top: returns r obtained from using mid-price or first
level prices from LOBs. Bottom: returns obtained from long and
short positions at a given time stamp.

Unlike most literature, where mid-price is used to represent
financial time-series, we define returns by directly using first
level prices from LOBs. Modelling mid-price is appropriate
if we are using daily data, but it is improper for intraday
strategies as we ignore spreads which are the differences
between best ask and bid price.The upper plot of Figure 1
illustrates the effects of spreads as transaction costs on re-
turns. The return, rmid,t, from using mid-price is about
three times higher than the actual return, rlong,t, that we
can obtain (we have to buy from ask sides and sell from bid
sides for aggressively entering or exiting positions). Fur-
ther, intraday strategies often involve both long and short
positions to increase profitability. However, returns from
these two positions are not symmetric at a given time stamp.
We observe this at the bottom of Figure 1. A return, rlong,t,
is -0.23 from a long position, but it does not imply a profit
of 0.23 by taking a short position (rshort,t = 0.01). In-
deed, the two return series are statistically different under
Kolmogorov-Smirnov and Wilcoxon signed-rank tests. This
discrepancy comes from changing spreads and indicates that
separate models are required to estimate returns for different
positions.

Our contributions: We propose a network architecture that
can simultaneously estimate multiple return quantiles from
both buy and sell positions by training with different Quan-
tile Loss functions. Our model consists of a block of con-

volutional layers and multiple LSTM branches to estimate
different quantiles. The convolutional block, as a feature
extraction mechanism, processes raw limit order book data
and LSTM layers are used to capture time dependencies
among the resulting feature maps. We show that this method
delivers better predictive performance than other popular
machine learning algorithms. Also, better performance can
be achieved by combining estimates from different quan-
tiles.

2. Data Description and Returns
Our dataset consists of one year full-resolution LOB data
for five of the most liquid stocks listed on the London Stock
Exchange (LSE), namely, Lloyds Bank, Barclays, Tesco,
BT and Vodafone. The data spans all trading days from
the 3rd of January 2017 to the 24th of December 2017
and only normal trading periods (between 08:30:00 and
16:30:00) are included. We take price and volume for 10
levels on both ask and bid sides of a LOB so there are 40
features at each timestamp. Overall, our dataset has more
than 134 million observations and there are, on average,
150,000 events per day per stock. The first 6 months are
used as training data, the next 3 months as validation data
and the last 3 months as test data. In the context of high-
frequency data, 3 months test data corresponds to millions
of observations and therefore provides sufficient scope for
testing model performance and robustness.

We prepare our input data using the procedure outlined in
our previous work (Zhang et al., 2019). We define returns
by taking spreads into account. A return, r(t), at time t,
both long or short, can be decomposed as:

ri(t)=
∆pi(t)

pmid(t)
,∆pi(t)=zi(t)∆m(t)−s(t)+s(t+k)

2
(1)

where

zi(t) =

{
1, if i = long
-1, if i = short

∆m(t) = pmid(t+ k)− pmid(t)

pmid(t) =
p
(1)
ask(t) + p

(1)
bid(t)

2

(2)

and k is the predicted horizon, s(t) and s(t+ k) are spreads
at time t and t + k. We denote the first level ask and bid
price as p(1)ask(t) and p(1)bid(t). A schematic description of
Equation (1) is given in Figure 2 – we cross half the spread
now, follow the mid price and cross the other half later. As
we already observe the current spread s(t), there is no need
to model it and we take it out from (1), so the return r′i(t)
of interest is defined as:

r′i(t) =
∆p′i(t)

pmid(t)
, ∆p′i(t) = ∆pi(t) + s(t). (3)
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Note that Equation (3) can be also written as:

r′i(t) = zi(t)rmid(t)− rspread(t)/2 (4)

where rmid = ∆m(t)/pmid(t) and rspread(t) =
(s(t + k) − s(t))/pmid(t). Instead of modelling
(r′long(t), r

′
short(t)), we can also estimate quantiles for mid-

price change and spread change (rmid(t), rspread(t)).
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Figure 2. A schematic description of Equation (1). p(1)a (t) and
p
(1)
b (t) represent best ask and bid prices at time t. Left: Shows a

return from a long position; Right: Shows a return from a short
position.

3. Methods and Network Architecture
3.1. Quantile Regression

In Quantile Regression (QR), we predict the conditional
quantile of the target distribution, i.e. P(r ≤ r(τ)|x) = τ ,
where τ is the quantile of interest and x is the input. We can
obtain the estimates by minimizing the Quantile Loss (QL)
with respect to r(τ), leading to the τ th quantile:

Lτ (r, r̂τ ) =
∑

t:r(t)<r̂τ (t)

(τ − 1)|r(t)− r̂τ (t)|+

∑
t:r(t)>r̂τ (t)

τ |r(t)− r̂τ (t)| (5)

where r(t) is the observation at time t and r̂τ (t) is the
predicted value. The common used mean absolute error is
equivalent to QL with τ = 0.5. Note that each quantile
has its own QL function and, in order to obtain multiple
quantiles, we need separate models to estimate each of them.
Our network solves this constraint by training with multiple
QLs to model all quantiles of interest simultaneously.

QR has a common problem known as quantile crossing
as quantile curves can cross each other, leading to an in-
valid distribution for the response, e.g. the predicted 90th
percentile of the response is smaller than the 80th per-
centile which is impossible. We follow the work of (Cher-
nozhukov et al., 2010) to rearrange the original estimated
non-monotone curve into a monotone rearranged curve.
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Figure 3. Model architecture for DeepLOB-QR. Here 1 × 2@16
represents a convolutional layer with 16 filters of size (1 × 2) .
QL: τ represents the quantile loss at quantile τ .

3.2. Network Architecture

We propose a neural network architecture that simultane-
ously models different quantiles of returns from both long
and short positions. This model is an extension of our
previous work (Zhang et al., 2019) and, for a detailed dis-
cussion on how initial layers are constructed, please find
more information there. We denote this new architecture as
DeepLOB-QR.

As each quantile has its own loss function, if we are inter-
ested in 3 quantiles for returns from each position, we would
need to estimate 6 separate models. This is computation-
ally demanding for LOBs data as we have millions of them
in a single day. Further, each of the models is essentially
estimating the “same” underlying quantity (long or short
return), just different quantiles of it. We would thus expect
that there are common features that can contribute to the
estimation of all models and it is wasteful to estimate them
separately.

DeepLOB-QR is designed to solve the above constraints
by using a common convolutional block and branching out
several LSTM layers to model different interested quantiles.
The “main input” takes raw LOBs data to extract features
that can modulate relationships between demand and supply
of an instrument. The two auxiliary inputs take past returns
from long and short positions.We isolate LOBs data and
past returns here because one important property of convo-
lutional layer is parameter sharing and price and volume
series have different dynamics compared to returns. Overall,
this is a multi-input and multi-ouput setup but trained using
different loss functions (6 QLs in our case). The last parallel
LSTM layers (LSTM@32) are only trained using their corre-
sponding losses, while each of the two LSTM@64 layers is
trained using 3 losses and the convolutional block is trained
using all losses.
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3.3. Forecast Combination

The works of (Rapach et al., 2010; Meligkotsidou et al.,
2014) suggest that combinations of individual quantile esti-
mates can form a much robuster point estimation and help
reduce prediction uncertainty. After obtaining quantile esti-
mates r̂(τ)(t), τ ∈ S where S denotes the set of considered
quantiles, we can combine them as:

r̂(t) =
∑
τ∈S

π(τ)r̂(τ)(t),
∑
τ∈S

π(τ) = 1 (6)

where the weights π(τ) represents the probability assigned
to the prediction of quantile τ . This estimator, as a linear
combination of order statistics, forms a point estimation of
the central location of a distribution based on small sets of
quantile estimates. We can reflect our beliefs on how each
quantile estimate affects the central location by adjusting
the corresponding weights.

The simplest method of estimating the weights is to use a
fixed weighting scheme. We can also form a constrained
optimzation problem (Meligkotsidou et al., 2014) to find an
optimal combination of quantile estimates:

π = arg min
π

Et[r(t− 1)−
∑
τ∈S

π(τ)r̂(τ)(t− 1)]2, (7)

where π = [π(τ)]τ∈S and
∑
τ∈S π

(τ) = 1. This procedure
hence treats quantile estimation as constrained regression,
where the weights are non-negative and sum to unity.

4. Experiments and Results
As in Figure 3, we predict three quantiles (0.25, 0.5 and
0.75) for returns from long positions and same three quan-
tiles for short positions, totalling 6 QLs. Our prediction
horizon, k, is 100 steps into the future. In order to com-
pare with other methods, we assess how different models
estimate the central location of a response. We denote esti-
mates of the 0.5 quantile from our model as DeepLOB-QR
and estimates obtained from the combination scheme (Equa-
tion (7)) as DeepLOB-QR(C). We compare to four other
models: an autoregressive model (AR), a generalised linear
model (GLR), a support a vector regression (SVR) and a
neural network with multiple fully connected layers (MLP).

Table 1 shows the results of our model compared to other
methods. Performance is measured by mean absolute er-
ror (MAE), mean squared error (MSE), median absolute
error (MEAE) and R2 score. All errors, except R2 score,
are divided by errors from a repetitive model1, therefore,
we understand how much better a model is compared to a
zero-intelligence method. DeepLOB-QR achieves the small-
est errors and the highest R2 for modelling returns from

1A repetitive model means using current observations as future
predictions, a zero-intelligence model.

Table 1. Experiment results for the LSE dataset.

MODEL MAE MSE MEAE R2

METRICS FOR RETURNS FROM LONG POSITIONS

AR 0.705 0.466 0.793 0.004
GLR 0.719 0.556 0.707 -0.188
SVR 0.802 0.498 0.755 -0.063
MLP 0.717 0.466 0.708 0.008
DEEPLOB-QR 0.701 0.462 0.710 0.010
DEEPLOB-QR(C) 0.701 0.461 0.702 0.014

METRICS FOR RETURNS FROM SHORT POSITIONS

AR 0.708 0.498 0.791 0.004
GLR 0.736 0.528 0.709 -0.055
SVR 0.738 0.548 0.708 -0.096
MLP 0.726 0.510 0.708 0.002
DEEPLOB-QR 0.705 0.501 0.720 0.013
DEEPLOB-QR(C) 0.702 0.494 0.699 0.015

Table 2. Experiment results for different prediction horizons k.

MODEL MAE MSE MEAE R2

METRICS FOR RETURNS FROM LONG POSITIONS

DEEPLOB-QRk=50 0.626 0.524 0.521 0.025
DEEPLOB-QR(C)k=50 0.634 0.514 0.513 0.042
DEEPLOB-QRk=100 0.701 0.462 0.710 0.010
DEEPLOB-QR(C)k=100 0.701 0.461 0.702 0.014
DEEPLOB-QRk=200 0.701 0.417 0.864 0.010
DEEPLOB-QR(C)k=200 0.719 0.419 0.841 0.011

METRICS FOR RETURNS FROM SHORT POSITIONS

DEEPLOB-QRk=50 0.624 0.493 0.494 0.024
DEEPLOB-QR(C)k=50 0.644 0.483 0.501 0.044
DEEPLOB-QRk=100 0.705 0.501 0.720 0.013
DEEPLOB-QR(C)k=100 0.702 0.494 0.699 0.015
DEEPLOB-QRk=200 0.700 0.428 0.864 0.012
DEEPLOB-QR(C)k=200 0.718 0.430 0.837 0.011

both long and short positions. Also, our results suggest that
better prediction results can be obtained from forecast com-
binations (DeepLOB-QR(C)). However, as the prediction
horizon (k) increases, the problem becomes more difficult
and we obtain worse performance, as shown in Table 2. To
visualise how quantile estimates form a prediction interval,
we plot them against the true observations in Figure 4.

5. Conclusion
In the context of time-series from high-frequency limit or-
der book (LOB) data we show that quantile regression (QR)
can provide us with prediction uncertainty by forming a
confidence interval and better predictve performance can
be obtained by combining multiple quantile estimates. A
promising direction for future work is to design trading



Extending Deep Learning Models for Limit Order Books to Quantile Regression

0 500 1000 1500 2000 2500 3000

2

1

0

1

2

re
tu

rn

r_long
QR: 0.5th

0 500 1000 1500 2000 2500 3000
time

2

1

0

1

2

re
tu

rn

r_short
QR: 0.75th

Figure 4. Top: Real returns from long positions is in red and 0.5
quantile estimate is in black. The upper boundary of grey shading
represents 0.75 quantile estimate and the lower boundary is for 0.25
quantile estimate; Bottom: Real returns and quantile estimates for
short positions.

strategies based on derived signals. We can combine QR
with Reinforcement Learning and use uncertainty informa-
tion to tackle the exploration and exploitation problem.
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