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Abstract
Generative Adversarial Networks (GANs) have
gained significant attention in recent years, with
particularly impressive applications highlighted
in computer vision. In this work, we present a
Mixture Density Conditional Generative Adver-
sarial Model (MD-CGAN), where the generator
is a Gaussian Mixture model, with a focus on
time series forecasting. Compared to examples
in vision, there have been more limited applica-
tions of GAN models to time series. We show that
our model is capable to estimate a probabilistic
posterior distribution over forecasts and that, in
comparison to a set of benchmark methods, the
MD-CGAN model performs well, particularly in
situations where noise is significant in the time
series.

1. Introduction
Generative Adversarial Networks have been one of the raft
of breakthroughs in Deep Learning methods in recent years.
Several different variations of the model have been intro-
duced since the method was first introduced by (Goodfellow
et al., 2014). One of the most popular variations of the
work is the Conditional Generative Adversarial Networks
(CGAN), (Mirza & Osindero, 2014), in which the generator
and discriminator are both conditioned on some observed in-
formation. Within time series forecasting, future values are
conditioned on information observed from the past - either
from the time series itself, exogenous data or a combination
of the two. This makes the CGAN approach particularly
useful for time series prediction.

Most applications of (C)GAN have been within computer
vision and, to a lesser extent, in natural language processing.
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The literature on the application of GAN models to problems
associated with time series is so far limited. However, some
work shows the potential usefulness of the method. For
example, (Esteban et al., 2017) apply a recurrent GAN to
generate realistic synthetic medical data series. (Zhou et al.,
2018) apply the GAN model to forecast high-frequency
stock datasets. In recent work, (Luo et al., 2018) use the
GAN models to generate missing values for incomplete time
series.

In this work, we present a method that expands on the
CGAN algorithm. In our model, the generator estimates
a multimodal posterior distribution, via a finite mixture of
Gaussians. Unlike most variations of GAN models, whereby
the generator makes a point estimation, MD-CGAN is ca-
pable of estimating a flexible probability distribution. This
paper is set out as follows. In Section 2 we present the
structure of the MD-CGAN model. In section 3 we test the
model on various datasets and discuss the results. Finally in
Section 4, we conclude.

2. The MD-CGAN Model Framework
We consider a time series, yt. Our aim is to infer the poste-
rior over some yt′>t, conditioned on a set of observations
which we denote xt. In order to make the posterior esti-
mation we model the conditional density p(yt′ |xt) as an
adversarial network. To achieve this we use a Mixture Den-
sity Network (MDN) model similar to the one presented
by Bishop (2006) for the generator G. The inputs to the
generator network are xt and zg, where zg is a vector of
samples randomly selected from a normal distribution. The
output of the Gt′(xt, zg) are the parameters of the Gaus-
sian mixture model, αt′ , σt′ , and µt′ . As first proposed
in Bishop (2006), we achieve this by using latent variables
s = {sα, sσ, sµ} that are conditioned on the inputs, and
where the mapping from [xt, zg] 7→ s 7→ [αt′ , σt′ , µt′ ] is
modelled via our network. As the mixture coefficients, αi,
must satisfy

∑m
i=1 αi(xt) = 1, hence we map sα to α via

the softmax function. As the elements of σ are strictly pos-
itive so we adopt, σ = exp(sσ). Finally the means can be
mapped directly from the latent variables, hence µ = sµ.
This formalism allows us to directly model the predictive
likelihood conditioned on an input, and the likelihood of G,
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indicated as L(G) is as follows:

L(Gt′(xt, zg)) =
m∑
i=1

αt′(xt, zg)

Ni(yt′ |µt′(xt, zg), σt′(xt, zg)), (1)

where m is the number of mixing coefficients. We note
that the generator outputs the parameters of a Gaussian
mixture model, and therefore it offers extreme flexibility in
modelling the posterior distribution for y′t.

As in the CGAN model, the discriminator, D, is also con-
ditioned on xt. The input to the discriminator model is, by
design, xtL(yt′) and the output xt. For true values of yt′ ,
the likelihood has the maximum value of 1. The generator
tries to ‘fool’ the discriminator by generating Gt′ where its
likelihood is close to 1. The loss function for the generator,
LG in Equation 2, reflects this concept. The discriminator
network, on the other hand, tries to differentiate between
true yt′ values and the pseudo-values created by the genera-
tor. The loss function for the discriminator, LD in Equation
3, reflects this, where the lowest value is achieved when
L(yt′) is 1 and L(Gt′(xt, zg)) is 0.

LG = Ez∼Pz(z)[−L(Gt′(xt, zg))] (2)

LD =Ey∼Pdata(y)[‖xtL(yt′)− xt‖2]+
Ez∼Pz(z)[‖xtL(Gt′(xt, zg))‖

2] (3)

The algorithm follows the steps in Algorithm 1. Figure

Algorithm 1 MD-CGAN Algorithm
1: for number of training iterations do
2: for k steps do do
3: Sample m noise samples, {z1,...,zm} from pg(z)
4: Sample m data points, {x1,...,xm} from pdata(x)
5: Update the discriminator by descending its stochas-

tic gradient:

∇θL
m∑
i=1

[‖xL(y)− x‖2 + ‖xL(G(zi, xi))‖2]

6: end for
7: Sample m noise samples, {z1,...,zm} from pg(z)
8: Update the generator by descending its stochastic

gradient:

∇θg
m∑
i=1

−L(G(zi, xi))

9: end for

1 illustrates the structure and the interaction between the
generator and the discriminator for the MD-CGAN model.

3. Experimental Results
3.1. Comparison with other Deep Learning Models

We compare the MD-CGAN model to the Mixture Density
Network model (MDN) introduced by (Bishop, 2006), the
CGAN model and a standard neural network (SNN). We
run experiments on various time series datasets. Our results
illustrate that the posterior estimated by the MD-CGAN has
lower mean square error (MSE) compared to other models,
for longer horizons and in the presence of noise or unfore-
seen shifts in noise levels.

The MD-CGAN model has two major advantages over the
SNN. The first is the capability to estimate the posterior
distribution instead of a point estimation. We note that for
the purpose of our experiments, the mixture coefficient m is
set to 1, and therefore the estimated posterior is effectively
a Gaussian.

The second advantage is the adversarial structure of the
MD-CGAN, which enables the model to navigate through
unforeseen shifts in noise levels and have lower MSE in
comparison to the non-adversarial models.

We perform experiments on four datasets, the Mackey-Glass
chaotic dataset, sunspot dataset (Royal Observatory of Bel-
gium, 2015), US initial jobless claims (U.S. Department of
Labor, 2018) (USIJC), and the EURUSD foreign exchange
daily rates (EURUSD FX rate). For consistency, the genera-
tor in the MD-CGAN, has the same structure as the MDN,
the generator of the CGAN, and the SNN for our experi-
ments. For each dataset, the series is split to the test and
training sets. We assess the performance based on MSE,
which is computed over the test dataset that consists of 400
data points post the training set. All algorithms have as input
the last k data points, where k is set to 5 for the purpose of
our experiments. We note that CGAN and SNN make point
estimate predictions while MD-CGAN and MDN estimate
posterior distributions at each time interval. The mixture co-
efficient m is set to one for all experiments to enable easier
comparison and the mean of the distribution is considered
the estimated value for the MDN and MD-CGAN models
for the purpose of calculating the errors.

Mackey-Glass and Sunspot datasets: Error comparison
across the models are indicated in Table 1. The GAN models
(CGAN and MD-CGAN), do not outperform other models
for these datasets.

Adding normally distributed noise to above test
datasets: To evaluate the additional benefit of adversarial
training, we add (30% by amplitude) normally distributed
noise to the test data, noting that the noise is not added to
the training dataset. This creates a shift in the level of noise
between the training set and the test set. Mean-square errors
are indicated in Table 1, referenced as “with noise”. In this
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Figure 1. Schematic of our proposed MD-CGAN model showing Generator and Discriminator components.

scenario, the GAN models outperform the SNN and MDN.,
with the MD-CGAN having the best performance of all
models. GAN approaches are thus able to more effectively
deal with systematic shifts in additive noise.

US initial jobless claims and EURUSD foreign exchange
daily rate: As one of our primary interests is the forecast-
ing in a finance setting, where stochastics are dominant, we
look in detail at the performance of the GAN approaches to
finance-related time series forecasting. We consider two can-
didate time series. Firstly, the US initial jobless claims over
a 40 year period, sampled weekly and a foreign exchange
(FX) rate between the EUR and the USD, over a period
of 15 years sampled daily. Figure 2 highlights the relative
performance of 1-step forecasts of the various approaches
taken on these data sets. Out of sample mean-square error
results are also provided in Table 1.

3.2. Longer-horizon forecasts

The forecasts in Subsection 3.1 are over 1-step. We ran the
models over the longer-term forecast of ten weeks for both
time series. We also perform comparisons against standard
econometric linear models, namely an AR(5) model and the
martingale model, where the expectation of the forecast is
merely the present datum. Taking the martingale model as
a baseline, we present in Table 2 the mean-square errors as
the ratio to the martingale model error. We note that the
MD-CGAN approach has ratios below one and provides the
lowest error of all models in this scenario.

4. Conclusion
We present the MD-CGAN model, with enhanced perfor-
mance in the presence of stochastic noise and for longer
horizons. In the experiments presented, the MD-CGAN out-

performs all non-linear models tested on the noisy Mackey
Glass and Sunspot datasets as well as the financial time se-
ries, for both short and long term forecast horizons. As the
forecasting horizon is extended we find it outperforms base-
line linear models as well as other nonlinear approaches. As
a GAN model, our approach retains adversarial robustness,
most notable when noise is present in data. Furthermore,
our MD-CGAN model can effectively estimate a flexible
posterior distribution, in sharp contrast to standard GAN
models. Exploiting the rich, multi-model, posterior distri-
bution is not reported here but will feature in follow-up
work. In summary, the MD-CGAN model combines the
advantageous features of both mixture density and GAN
methods. We see this as particularly useful in dealing with
time series in which noise is significant and for providing
robust long-term forecasts beyond simple point estimates.
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Figure 2. Results for the foreign exchange (FX) and US jobless claims (USIJC) time series. The left-hand plots show comparison of
CGAN (blue), SNN (green) and ground truth (red). The right-hand plots show forecasts of our model, MD-CGAN (blue), the MDN
approach (green) and true values (red). The y-axis is arbitrary after data normalization, and the x-axis is in samples. All data constitutes
out of sample test data with a forecast horizon of one day for FX and one week for USIJC.

Mackey-Glass Sunspot Mackey-Glass
with Noise

Sunspot
with Noise USIJC EURUSD

FX rate

SNN 0.0014
(0.0020)

0.0154
(0.0260)

0.1640
(0.1939)

0.0536
(0.0777)

0.0070
(0.0154)

0.0022
(0.0017)

CGAN 0.0036
(0.0048)

0.0196
(0.0358)

0.0360
(0.0525)

0.0266
(0.0380)

0.0074
(0.0157)

0.0018
(0.0026)

MDN 0.0002
(0.0003)

0.0105
(0.0239)

0.1402
(0.1597)

0.0758
(0.1144)

0.0080
(0.0238)

0.0016
(0.0020)

MD-CGAN 0.0026
(0.0030)

0.0172
(0.0293)

0.0264
(0.0392)

0.0203
(0.0359)

0.0041
(0.0089)

0.0008
(0.0011)

Table 1. MSEs (standard deviations) for all experiments. All data was pre-normalized to [0, 1] range.

USIJC EURUSD FX rate

AR(5) 0.78 1.91
SNN 0.79 1.25
CGAN 0.77 0.85
MDN 0.84 3.48
MD-CGAN 0.73 0.76

Table 2. Ratio of model MSE to martingale baseline model for a
forecast horizon of 10 weeks.

Mirza, M. and Osindero, S. Conditional Generative Adver-

sarial Nets. arXiv preprint arXiv:1411.1784, 2014.

Royal Observatory of Belgium. SILSO Data, 2015.

U.S. Department of Labor. The Unemployment Insurance
Weekly Claims. Bureau of Labor Statistics, 2018.

Zhou, X., Pan, Z., Hu, G., Tang, S., and Zhao, C. Stock Mar-
ket Prediction on High-Frequency Data Using Generative
Adversarial Nets. Mathematical Problems in Engineering,
2018, 2018.


