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Abstract
Solving real-world problems, particularly with
deep learning, relies on the availability of abun-
dant, quality data. In this paper we develop a
novel framework that maximises the utility of
time-series datasets that contain only small quan-
tities of expertly-labelled data, larger quantities
of weakly (or coarsely) labelled data and a large
volume of unlabelled data. This represents sce-
narios commonly encountered in the real world,
such as in crowd-sourcing applications. In our
work, we use a nested loop using a Kernel Den-
sity Estimator (KDE) to super-resolve the abun-
dant low-quality data labels, thereby enabling ef-
fective training of a Convolutional Neural Net-
work (CNN). We demonstrate two key results:
a) The KDE is able to super-resolve labels more
accurately, and with better calibrated probabil-
ities, than well-established classifiers acting as
baselines; b) Our CNN, trained on super-resolved
labels from the KDE, achieves an improvement
in F1 score of 22.1 % over the next best baseline
system in our candidate problem domain.

1. Introduction
Finely-labelled data are crucial to the success of supervised
and semi-supervised approaches to classification algorithms.
In particular, common deep learning approaches (Bishop,
1995; LeCun et al., 2015) typically require a great number
of data samples to train effectively (Krizhevsky et al., 2012;
Rolnick et al., 2017). In this work, a sample refers to a
section taken from a larger time-series dataset of audio.
Often, these datasets lack large quantities of fine labels as
producing them is extremely costly (requiring exact marking
of start and stop times). The common distribution of data
in these domains is such that there are small quantities of
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expertly-labelled (finely) data, large quantities of weakly
(coarsely) labelled data, and a large volume of unlabelled
data. Here, weak labels refer to labels that indicate one
or more events are present in the sample, although do not
contain the information as to the event frequency nor the
exact location of occurrence(s) (illustrated in Section 2.2,
Fig. 2). Our goal therefore is to improve classification
performance in domains with variable quality datasets.

Our key contribution is as follows. We propose a framework
that combines the strengths of both traditional algorithms
and deep learning methods, to perform multi-resolution
Bayesian bootstrapping. We obtain probabilistic labels for
pseudo-fine labels, generated from weak labels, which can
then be used to train a neural network. For the label refine-
ment from weak to fine we use a Kernel Density Estimator
(KDE).

The remainder of the paper is organised as follows. Section
2 discusses the structure of the framework as well as the
baseline classifiers we test against. Section 3 describes the
datasets we use and the details of the experiments carried out.
Section 4 presents the experimental results, while Section 5
concludes.

2. Methodology
2.1. Framework Overview

Our framework is separated into an inner and outer classi-
fier in cascade as in Figure 1. For the inner classifier we
extract features from the finely and weakly-labelled audio
data using the two-sample Kolgomogrov-Smirnov test for
features of a log-mel spectrogram (Section 2.2). We train
our inner classifier, the Gaussian KDE (Section 2.3), on the
finely-labelled data and predict on the weakly-labelled data.

For the outer classifier we extract the feature vectors from
an unlabelled audio dataset using the log-mel spectro-
gram. We then train our outer classifier, a CNN, (Section
2.4) on the finely-labelled data and the resulting pseudo-
finely labelled data output by the Gaussian KDE. The
details of our data and problem are found in Section
3. Code will be made available on https://github.
com/HumBug-Mosquito/weak_labelling.

https://github.com/HumBug-Mosquito/weak_labelling
https://github.com/HumBug-Mosquito/weak_labelling
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Figure 1. Framework comprising a feature extraction & selection
layer, an inner classifier and an outer classifier. The arrows repre-
sent data flows.

2.2. Feature Extraction and Selection

The CNN uses the log-mel spectrogram (as in Fig. 2) as it
has recently become the gold standard in feature representa-
tion for audio data (Hayashi et al., 2017; Kong et al., 2019).
The input signal is divided into 0.1 second windows and we
compute 128 log-mel filterbank features. Thus, for a given
100 seconds of audio input, the feature extraction method
produces a 1000× 128 output.

The two-sample Kolmogorov-Smirnov (KS) test (Ivanov et
al., 2012) is a non-parametric test for the equality of contin-
uous, one-dimensional probability distributions that can be
used to compare two samples. This measure of similarity is
provided by the Kolmogorov-Smirnov statistic which quan-
tifies a distance between the empirical distribution functions
of the two samples. We use the KS test to select a subset
of the 128 log-mel features, that are maximally different be-
tween the two classes to feed into the classifiers. We choose
N features with the largest KS statistics. Fig. 2 illustrates
that the process to find maximally different feature pairs,
correctly chooses frequencies of interest. For example, if the
noise file is concentrated in high frequencies (as in Fig. 2),
the KS feature selection process chooses lower harmonics
of the training signal (a mosquito flying tone) as features to
feed to the algorithms. Conversely, for low-frequency dom-
inated noise, higher audible harmonics of the event signal
are identified.

2.3. Gaussian Kernel Density Estimation

Kernel density estimation (KDE) or Parzen estimation
(Scott, 2015; Parzen et al., 1962) is a non-parametric method
for estimating a d-dimensional probability density function
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Figure 2. From top to bottom: Log-mel spectrogram of 100 sec-
onds of audio data at a signal-to-noise ratio of −15 dB. The KS-
selected features are shown as green dashed lines; The correspond-
ing fine and weak labels for the above log-mel spectrogram.

fX(x) from a finite sample D = {xi}Ni=1, xi ∈ Rd, by
convolving the empirical density function with a kernel
function.

We then use Bayes’ theorem to calculate the posterior over
class 1

p(C1 | x) =
p(x | C1)p(C1)

p(x | C0)p(C0) + p(x | C1)p(C1)
, (1)

where p(x | Ck) is the KDE per class Ck, with C1 represent-
ing the event class and C0 the noise class (i.e. non-event).

2.4. Convolutional Neural Network

With our scarce data environment we use a CNN and
dropout with probability p = 0.2 (Srivastava et al., 2014).
Our proposed architecture, given in Fig. 3, consists of an
input layer connected sequentially to a single convolutional
layer and a fully connected layer. The CNN is trained for 10
epochs with SGD (Bottou et al., 2010), and all activations
are ReLUs. We use this particular architecture due to con-
straints in data size (Kiskin et al., 2018) and therefore have
few layers and fewer parameters to learn.

2.5. Traditional Classifier Baselines

We compare our inner classifier, the Gaussian KDE, with
more traditional classifiers that are widely used in machine
learning: Linear Discriminant Analysis (LDA), Gaussian



Super-resolution of Time-series Labels for Event Detection 

Convolutional Layer 

127x9x3
2 

Max-pooling 
 

Dense Layer Output 

63x4x32 
 
 

kernel: 2x2 kernel: 2x2 

128x10x1 

2x1 
 

Flatten 
 

Fr
eq

ue
nc

y 
(H

z)
 

 

256x1 
 

Time (s) 

Figure 3. The CNN architecture. Spectrogram of mosquito record-
ing fed as input to convolutional layer with 32 filters and kernel
2× 2× 1. Generated feature maps are down-sampled by a max-
pooling layer from 127 × 9 to 63 × 4. It is then connected to a
dense layer with 256 neurons and finally the output with 2 neurons.

Naïve Bayes (GNB), support vector machines using a radial
basis function kernel (RBF-SVM), random forests (RF) and
a multilayer perceptron (MLP).

3. Experiments
3.1. Description of Datasets

The most common scenario where mixed quality labels
can be found is in crowd-sourcing tasks (Cartwright et al.,
2019; Deng et al., 2009; Lin et al., 2014), or any challenge
where data collection is expensive. The HumBug (Zooni-
verse, 2019), (Li et al., 2017) project utilises crowd-sourcing,
forming the main motivation for this research, as well as
the basis for our signal1. The event signal consists of a
stationary real mosquito audio recording with a duration
of 1 second. The noise file is a non-stationary section of
ambient forest sound. The event signal is placed randomly
throughout the noise file at varying signal-to-noise ratios
(SNRs), to create quantifiable data for prototyping algo-
rithms. There is a class imbalance of 1 second of event
to 9 seconds of noise in the finely-labelled data and this is
propagated to the weakly-labelled and unlabelled datasets.
We include 100 seconds of expert, finely-labelled data, 1000
seconds of weakly-labelled data, and a further 1000 seconds
of unlabelled test data. To report performance metrics, we
create synthetic labels at a resolution of 0.1 seconds for the
finely-labelled data, and on the order of 5 seconds for the
weakly-labelled data. We choose 5 seconds as to allow the
labeller to have temporal context when classifying audio
as an event or non-event. As the listener is presented ran-
domly sampled (or actively sampled (Houlsby et al., 2011;
Naghshvar et al., 2012)) sections of audio data, a section
much shorter than 5 seconds would make the task of tuning

1The overall goal of HumBug is real-time mosquito species
recognition to identify potential malaria vectors in order to deliver
intervention solutions effectively.

into each new example very difficult due to the absence of a
reference signal.

3.2. Experimental Design

We evaluate our inner model against the baseline classifiers
with two experiments and finally test the overall perfor-
mance of the framework utilising the outputs of the various
inner classifiers. We make the assumption that the accuracy
of the weak labels is 100%. Therefore, all the classifiers pre-
dict over the coarse class 1 labelled data only. Additionally,
the priors we use in Eq. 1 for our Gaussian KDE model are
set such that p(C0) = p(C1) = 0.5. This is to reflect that,
since the audio sample is weakly labelled 1, each data point
is equally likely to be in fine class 0 or 1.

Generative models, such as the Gaussian KDE obtain a
performance boost from the additional information provided
by the coarse class 0 data as this allows it to better model
the class 0 distribution. Conversely, discriminative models
such as the SVM, RF and MLP take a hit in performance
because the decision boundary that they create over-fits to
the class 0 data points due to the increased class imbalance.
We therefore train the LDA, GNB, SVM, RF and MLP on
the finely-labelled data only, whereas the Gaussian KDE is
trained on both the finely-labelled data and the coarse class
0 data.

4. Classification Performance
For each SNR we run 40 iterations, varying the time lo-
cation of the injected signals, as well as the random seed
of the algorithms. After applying median filtering, with a
filter window of 500 ms, we see the results in Fig. 4. The
F1-score gradually increases as expected from the threshold
of detection to more audible SNRs. The decay of perfor-
mance at the lower SNRs can be partially accounted for by
the two-sample KS test used for feature selection failing to
choose features of interest due to the increased noise floor.
We observe a significant benefit to using the Gaussian KDE,
which when combined with temporal averaging helps re-
cover the dynamic nature of the signal (namely that there is
correlation between neighbouring values in the time-series).

Fig. 4 shows that the Gaussian KDE predicts better cali-
brated probabilities than the other baseline classifiers. This
is shown by applying rejection (Bishop, 1995; Hanczar
and Dougherty, 2008) in addition to the median filter-
ing. The rejection window for the output probabilities is
0.1 < p(C1|x) < 0.9. The Gaussian KDE improves sig-
nificantly in performance, especially at the lower SNRs;
however it should be noted that the F1-score is evaluated on
the remaining data after rejection. The Gaussian KDE re-
jects a large proportion of the data at lower SNRs, showing
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Figure 4. From left to right: Boxplots showing results of first two experiments, grouped by SNR. LDA, SVM, RF and MLP are trained on
finely-labelled data only whilst the Gaussian KDE is trained on the finely-labelled data and coarse class 0 data.

that the probabilities are at either extremes only when the
model is confident in its predictions.

The final experiment tests the overall framework with input
to a CNN from pseudo-finely labelled data with median
filtering and rejection applied. Table 1 shows that using the
framework in conjunction with any of the inner classifiers
outputs outperforms a regular CNN trained on the coarse
data. Furthermore, training the CNN on the output of the
Gaussian KDE significantly improves detection of events
by 22.1% over the best baseline system, the CNN(GNB).
We also show that using the strongest inner classifier (KDE)
alone results in vastly lower precision and recall scores to
the bootstrapping approach advocated here, which sees an
improvement of 0.22 to the F1-score gained by incorporat-
ing the CNN into the pipeline with the KDE.

Table 1. CNN outer classifier: Metrics reported as means ± one
standard deviation at an SNR of −19.8 dB for 40 iterations

Classifier F1-score Precision Recall
CNN(KDE) 0.729 ± 0.034 0.719 ± 0.029 0.744 ± 0.031
CNN(MLP) 0.435± 0.022 0.667± 0.026 0.322± 0.029
CNN(RF) 0.320± 0.031 0.419± 0.035 0.259± 0.034

CNN(SVM) 0.338± 0.024 0.484± 0.024 0.259± 0.022
CNN(GNB) 0.597± 0.023 0.654± 0.028 0.549± 0.023
CNN(LDA) 0.307± 0.027 0.571± 0.026 0.210± 0.023

CNN(Coarse) 0.174± 0.036 0.095± 0.031 0.923± 0.039
KDE 0.506± 0.021 0.518± 0.021 0.502± 0.024

5. Conclusions & Further Work
5.1. Conclusions

This paper proposes a novel framework utilising a Gaussian
KDE for super-resolving weakly-labelled data to be fed into
a CNN to predict over unlabelled data. Our framework is
evaluated on synthetic data and achieves an improvement
of 22.1% in F1-score over the best baseline system. We
thus highlight the value label super-resolution provides in
domains with only small quantities of finely-labelled data, a
problem in the literature that is only sparsely addressed to
date.

5.2. Further Work

To leverage the probabilistic labels outputted by the inner
classifier, a suitable candidate for the outer classifier is a loss-
calibrated Bayesian neural network (LC-BNN). This com-
bines the benefits of deep learning with principled Bayesian
probability theory (Cobb et al., 2018).

Due to computational limitations, optimisation of the hyper-
parameters was infeasible. Future work plans to use
Bayesian Optimisation (Snoek et al., 2012) for this tuning.

Finally, following the promising results of this paper, the
next step is application to real datasets.
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