
Population-based Global Optimisation Methods
for Learning Long-term Dependencies with RNNs

Bryan Lim 1 2 Stefan Zohren 1 2 Stephen Roberts 1 2

Abstract
Despite recent innovations in network architec-
tures and loss functions, training RNNs to learn
long-term dependencies remains difficult due to
challenges with gradient-based optimisation meth-
ods. Inspired by the success of Deep Neuroevolu-
tion in reinforcement learning (Such et al., 2017),
we explore the use of gradient-free population-
based global optimisation (PBO) techniques –
training RNNs to capture long-term dependencies
in time-series data. Testing evolution strategies
(ES) and particle swarm optimisation (PSO) on
an application in volatility forecasting, we demon-
strate that PBO methods lead to performance im-
provements in general, with ES exhibiting the
most consistent results across a variety of archi-
tectures.

1. Introduction
With the increasing availability of high-frequency sensor
data, recent trends in time series forecasting have explored
the use of deep neural networks to make predictions from
real-time data streams. Successful applications have also
spanned a multitude of fields – including real-time human
activity recognition based on wearable sensors in healthcare
(Nweke et al., 2018), local rainfall prediction in weather
forecasting (Chao et al., 2018), and high-frequency market
microstructure prediction in finance (Zhang et al., 2019).

Recurrent neural networks (RNNs), in particular, have sev-
eral properties that make them attractive for real-time pre-
dictions from a methodological standpoint. Firstly, RNNs
learn complex cross-sectional and temporal relationships in

1Department of Engineering Science, University of Ox-
ford, Oxford, United Kingdom 2Oxford-Man Institute of Quan-
titative Finance, University of Oxford, Oxford, United King-
dom. Correspondence to: Bryan Lim <blim@robots.ox.ac.uk>,
Stefan Zohren <zohren@robots.ox.ac.uk>, Stephen Roberts
<sjrob@robots.ox.ac.uk>.

a purely data driven manner, which is useful for complex
datasets where the underlying data generation process is not
well understood. In addition, RNNs also naturally retain
information over time through the recursive update of an
internal memory state. This helpful in cases where the exact
length of relevant history is unknown, and architectures that
rely on a fixed look-back window – such as convolutional
neural networks (CNNs) – might not be fully capture all
relevant information.

However, long-term dependency learning with RNNs re-
mains difficult in practice, mainly due to inherent problems
with backpropagation through time (BPTT) with stochastic
gradient descent (SGD) – such as exploding/vanishing gradi-
ents seen in standard Elman RNN architectures (Hochreiter
et al., 2001). Challenges still persist even with modern archi-
tectures which stabilise gradient flow – such as Long-short
Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997)
– with multiple lines of active research looking at both mem-
ory enhancements and training improvements to help RNNs
learn long-term dependencies (Neil et al., 2016; Zhang et al.,
2018; Trinh et al., 2018; Kanuparthi et al., 2019). Further-
more, standard minibatch SGD, where long trajectories are
truncated into shorter sequences for minibatches, also runs
the risk of excluding relevant information during training
– as neural networks are unable to establish links between
observations and historical drivers which lie outside the
truncation window. Better performance for long-term de-
pendency modelling could hence be achieved by exploring
training methods that do not rely on gradient-based BPTT.

Gradient-free evolutionary computation techniques have pre-
viously been used to train deep neural networks in reinforce-
ment learning, with methods such as Deep Neuroevolution
(Such et al., 2017) exhibiting comparable results to stan-
dard gradient-based approaches. Inspired by this success,
we investigate the use of population-based optimisation
(PBO) algorithms – i.e. evolution strategies (Salimans et al.,
2017) and particle swarm optimisation (Kennedy & Eber-
hart, 1995) – in RNN training, specifically to overcomes
issues in learning long term dependencies with gradient-
based methods. Focusing on applications in time series
forecasting, we evaluate the use of PBO methods to train
a variety of modern RNN architectures, demonstrating the



Population-based Global Optimisation Methods for Learning Long-term Dependencies with RNNs

performance improvements over standard gradient-based
stochastic backpropagation while maintaining a compara-
ble computational budget – as measured by the number of
feed-forward passes through the network during training.

2. Related Works
Architectural Innovations The bulk of research in long-
term dependency learning has focused on architectural im-
provements – especially pertaining to the internal memory
state of the RNN. The inclusion of the forget gate in Long-
short Term Memory (LSTM) (Hochreiter & Schmidhuber,
1997), for instance, reduces vanishing/exploding gradient
issues by introducing linear temporal paths which facili-
tate gradient flow (Kanuparthi et al., 2019). More recently,
Fourier Recurrent Units (FRUs) (Zhang et al., 2018) have
been proposed, improving gradient flow via Fourier basis
functions in its internal memory state. In other works, Neil
et al. (2016) also introduced the Phased LSTM (P-LSTM)
to address situations where sparse, asynchronous sensor
updates infrequently contribute to predictions – using an
additional time gate to control how often observations con-
tribute to the LSTM’s internal memory state. This helps to
improve predictions for long event-based sequences, par-
ticularly where irregularly sampled data is present. While
issues with gradient-based methods have been addressed in
part, long-term dependency learning fundamentally remains
an area of active research for RNNs, with performance im-
provements still being gained by enhancing standard train-
ing methods even for existing architectures (see below).

Modifications to Standard RNN Training An alterna-
tive class of methods investigates the enhancement of stan-
dard training methods (Goodfellow et al., 2016), namely
the augmentation of loss functions or gradient flows during
training (Trinh et al., 2018; Kanuparthi et al., 2019). In
Trinh et al. (2018), a combination of truncated BPTT and an
auxiliary loss function is adopted – generated by selecting a
random anchor point during training, feeding internal states
from that point into a separate prediction decoder, and back-
propagating through the original RNN to a pre-determined
truncation point. In contrast to PBO – which performs a full
feed-forward pass through the network to compute losses –
this approach stills applies backpropagation to truncated se-
quences, making it difficult to effectively learn dependencies
beyond a specified window. Alternatively, Kanuparthi et al.
(2019) explicitly decompose the LSTM recursion equations
into a bounded linear and an unbounded polynomial gradient
component, with the former being responsible for long-term
dependency learning. As unbounded terms can dominate
gradient backpropagation – and inadvertently hamper long-
term dependency learning – they propose what they term the
h-detach trick to suppress this term by stochastically drop-
ping it during training. While effective, we note that this

approach is solely restricted to the LSTM model, and PBO
methods can be easily applied to any RNN architecture.

Evolutionary Algorithms in Reinforcement Learning
Recent works in deep reinforcement learning have explored
evolutionary algorithms as scalable alternatives to training
deep neural networks (Such et al., 2017; Salimans et al.,
2017). Using simple random Gaussian perturbations to mu-
tate network weights at each training step, these methods
utilise large populations of individuals to efficiently con-
verge on the optimum coefficients (≈ 1000 offspring in
Such et al. (2017)) – all of which can be efficiently dis-
tributed on parallel workers. To maintain the speed of com-
munication between workers for big networks with many
weight parameters, they propose a simple compact repre-
sentations of weights in each offspring of the population,
saving down a single random seed which can be used to
generate the full weight perturbation vector. While well-
studied in renouncement learning, little work has been done
to evaluate the efficacy of evolutionary algorithms in captur-
ing long-term dependencies with RNNs. To the best of our
knowledge, this paper is the first to examine the use PBO
methods in the context of long-term dependency modelling
– along with its implications on time series forecasting.

3. Population-based Global Optimisation
Techniques

Population-based optimisation (PBO) methods are tradi-
tionally divided into two categories (Wu et al., 2019) – 1)
evolutionary algorithms that mimic biological evolution,
and 2) swarm intelligence approaches which simulate social
behaviour of large groups of animals. For simplicity and
ease of comparison, we interchangeably refer to popula-
tion members in both evolutionary algorithms and swarm
intelligence as individuals in this paper.

PBO methods in general comprise the following steps:

1. Initialisation – Create a default initial population of
individuals and optimisation parameters, e.g. randomly
distributing them over weight space or setting to 0.

2. Population Update – At each training iteration, the
weights for each individual are updated based on their
respective meta-heuristics – e.g. by mutation or particle
movement.

3. Score Computation – Loss functions are then evalu-
ated for each individual before control parameters are
updated – i.e. the generation of offspring for ES and
global/local optimum weights for PSO

4. Repeating steps 2 and 3 until convergence.



Population-based Global Optimisation Methods for Learning Long-term Dependencies with RNNs

We next proceed to describe our specific implementations
based on the general framework above.

3.1. Evolution Strategies

Given the comparable performance between both Deep Neu-
roevolution and Evolution Strategies, we adopt the simple
ES implementation explored in the reinforcement learning
application of Salimans et al. (2017) – an outline of which
is presented in Algorithm 1 for reference.

Algorithm 1 Evolution Strategies
Input: Training data x, Learning rate α, Noise Standard
Deviation σ, Initial Weights θ0

Initialise global optimal weights: θg(0) = θ0

for k = 1 to max iteration K do
for i = 1 to N do

Population Update:
Sample εi ∼ N(0, I)
Update individuals θ(i, k)← θg(k) + σεi

Score Computation:
Compute Reward R(i) = −L (x;θ(i, k))

end for

Set global weights:
θg(k + 1)← θg(k) +

α
σN

∑N
i=1R(i) εi

end for

Here we define θ(i, k) ∈ RC to be the vector of C RNN pa-
rameters for individual i at training iteration k, and L (x;θ)
to be the loss function used for training given the input data
and network parameters θ. We note that the loss function
is computed here by conducting a full feed-forward pass
across the network –avoiding any truncation of the data or
minibatching beforehand.

3.2. Neuroparticle Swarm Optimisation

Given the relative simplicity of the mutation function used
in ES, we also explore the use of more sophisticated pop-
ulation update rules through PSO – which we refer to as
Neuroparticle Swarm Optimisation (NPSO) in the context
RNN training.

Adopting the formulation of Shi & Eberhart (1998), a hy-
perparameter w is defined for inertial weights, and set the
velocity V (i, k) and position θ(i, k) as below for each train-
ing iteration.

θ(i, k) = θ(i, k − 1) + V (i, k), (1)
V (i, k) = w V (i, k − 1)

+ c1 U1(i, k) (θl(i, k − 1)− θ(i, k − 1))

+ c2 U2(i, k) (θg(k − 1)− θ(i, k − 1)) (2)

where c1 = c2 = 2 are fixed constants, U1(i, k) andU2(i, k)
are samples from standard uniform distributions U(0, 1),
θl(i, k − 1) is the best position observed locally by each
particle, and θg(k − 1) is the best global position across all
particles. A full description can be found in Algorithm 2
for additional clarity, noting that θg(K) is used to generate
forecasts at run-time.

Algorithm 2 Neuroparticle Swarm Optimisation
Input: Training data x, Inertial Weight w,
Initial Weight Variance σ2

Initialise ∀i:
θg(0) = θl(i, 0) = V (i, 0) = 0, θ(i, 0) ∼ N

(
0, σ2I

)
Llmin(i) =∞, Lgmin =∞

for k = 1 to max iteration K do

Population Update:
V (i, k)← Update(V (i, k − 1)), using Equation (2)
θ(i, k)← θ(i, k − 1) + V (i, k)

Score Computation:
if L (x;θ(i, k)) < Lmin(i) then

θl(i, k)← θ(i, k)
Lmin(i)← L (x;θ(i, k))

if Llmin(i) < L
g
min then

θg(k)← θl(i, k)
Lgmin ← Llmin(i)

end if
end if

end for

4. Experiments with Intraday Volatility
Forecasting

To evaluate the effectiveness of the PBO in learning long-
term dependencies, we apply our methods for training RNNs
to the problem of volatility forecasting – a key area of inter-
est in finance. Given the presence of volatility clustering at
a daily time scales (Cont, 2001) and the evidence of intra-
day periodicity of returns volatility (Andersen & Bollerslev,
1997), volatility datasets present RNNs with a mixture of
long-term and short-term relationships to be learnt – making
them particularly relevant for our evaluation.



Population-based Global Optimisation Methods for Learning Long-term Dependencies with RNNs

4.1. Description of Dataset

We consider the application of RNNs to forecasting 30-min
intraday realised variances (Andersen et al., 2003) for FTSE
100 index returns. This was derived using 1-min index
returns sub-sampled from Thomson Reuters Tick History
Level 1 (TRTH L1) quote data from 4 January 2000 to 4
July 2018.

4.2. RNN Benchmarks

Tests are performed on a variety of modern RNN bench-
marks as specified below:

• Standard LSTM (Hochreiter & Schmidhuber, 1997)

• Phased LSTM (P-LSTM) (Neil et al., 2016)

• Fourier Recurrent Unit (FRU) (Zhang et al., 2018)

As described in Section 2, both the P-LSTM and FRU are
specifically designed for long-term dependency modelling –
allowing us to determine if these relationships can be learnt
using better architectures alone.

4.3. Training Methods

In addition, the following optimisation methods were tested
in experiments:

• Stochastic Gradient Descent (SGD) with the Adam
Optimiser(Kingma & Ba, 2015)

• Evolution Strategies (ES) (Salimans et al., 2017)

• Neuroparticle Swarm Optimisation (NPSO)

For the SGD approach, 100 iterations of random search
are performed for hyperparameter optimisation with back-
propagation performed up to a maximum of 300 epochs or
convergence – making up a maximum of 30k feedforward
passes through network during training. To explicitly con-
sider the effects of short truncation windows, RNNs were
only unrolled back 20 time steps for BPTT.

Using this to set the overall computational budget, evolu-
tionary computation methods utilised a population of 30
particles over 50 training iterations – limiting to 20 itera-
tions of random search for hyperparameter optimisation.

4.4. Results and Discussion

Network performance was evaluated using the mean-
squared error (MSE) of one-step-ahead volatility forecasts,
with results presented in Table 1 normalised by the MSE of
the LSTM trained using SGD.

SGD ES NPSO

LSTM 1.000 0.189* 0.248
P-LSTM 11.272 0.189 0.138*
FRU 5.446 0.188* 268.441

Table 1. Normalised MSEs for Volatility Forecasts

From the MSEs reported, we can see that training RNNs
using population-based approaches methods lead to signif-
icant improvements in predictive performance – with ES
reducing MSEs by more than 80% on average. Performance
improvements are also observed for architectures designed
specifically with long-term dependencies in mind, overcom-
ing the limitations with SGD.

While both ES and NPSO do lead to better RNN perfor-
mance in general, apart from the NPSO-trained FRU which
leads to large propagated errors, the simpler population up-
date rules in ES appears to lead to more consistent results in
general – with NPSO exhibiting a higher variance across the
architectures. This could be attributed to the hyperparam-
eter ranges selected for our initial population and inertial
weights, and improved results can potentially be achieved
through better hyperparameter search and varying the c1
and c2 parameters which are currently fixed.

Focusing on the SGD-trained models alone, we note that
more sophisticated architectures underperformed compared
to the standard LSTM for this specific volatility forecasting
application. One possible reason is our use of very short
truncated segments for BPTT – with RNNs unrolled for only
20 time steps – making it difficult for complex networks to
learn the temporal relationships and resulting in overfitting.

5. Conclusions and Future Work
In this paper, we investigate the use of population-based
global optimisation techniques for learning long-term de-
pendencies with RNNs in time-series datasets. Testing this
on an application in volatility forecasting, we observe that
these gradient-free approaches help circumvent the issues
observed with standard SGD optimisation, leading to better
predictive performance across a variety of network archi-
tectures. While PBO does improve performance in general,
simple evolution strategies appear to lead to more stable
results in our specific application.

While our tests were performed on single workstations to
ensure a comparable computational load to SGD, we note
that ES is typically used with large distributed computing
environments. As such, future extensions could achieve
even better results by using ES with larger populations dis-
tributed over many parallel workers – unlocking the full
potential of PBO for time series prediction tasks.



Population-based Global Optimisation Methods for Learning Long-term Dependencies with RNNs

References
Andersen, T., Bollerslev, T., Diebold, F., and Labys, P. Mod-

eling and forecasting realized volatility. Econometrica,
71(2):579–625, 2003.

Andersen, T. G. and Bollerslev, T. Intraday periodicity and
volatility persistence in financial markets. Journal of
Empirical Finance, 4(2):115 – 158, 1997. ISSN 0927-
5398.

Chao, Z., Pu, F., Yin, Y., Han, B., , and Chen, X. Research
on real-time local rainfall prediction based on MEMS
sensors. Journal of Sensors, 2018.

Cont, R. Empirical properties of asset returns: Stylized facts
and statistical issues. Quantitative Finance, 1:223–236,
2001.

Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.

org.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997. ISSN 0899-
7667.

Hochreiter, S., Bengio, Y., Frasconi, P., and Schmidhuber, J.
Gradient flow in recurrent nets: the difficulty of learning
long-term dependencies. In A Field Guide to Dynamical
Recurrent Neural Networks. IEEE Press, 2001.

Kanuparthi, B., Arpit, D., Kerg, G., Ke, N. R., Mitliagkas, I.,
and Bengio, Y. h-detach: Modifying the LSTM gradient
towards better optimization. In International Conference
on Learning Representations(ICLR), 2019.

Kennedy, J. and Eberhart, R. Particle swarm optimization.
In Proceedings of ICNN’95 - International Conference
on Neural Networks, 1995.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations (ICLR), 2015.

Neil, D., Pfeiffer, M., and Liu, S.-C. Phased LSTM: Accel-
erating recurrent network training for long or event-based
sequences. In Proceedings of the 30th Conference on
Neural Information Processing Systems, (NIPS), 2016.

Nweke, H. F., Teh, Y. W., Al-garadi, M. A., and Alo, U. R.
Deep learning algorithms for human activity recognition
using mobile and wearable sensor networks: State of
the art and research challenges. Expert Systems with
Applications, 105:233 – 261, 2018. ISSN 0957-4174.

Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever,
I. Evolution strategies as a scalable alternative to rein-
forcement learning. CoRR, abs/1703.03864, 2017. URL
http://arxiv.org/abs/1703.03864.

Shi, Y. and Eberhart, R. A modified particle swarm opti-
mizer. In 1998 IEEE International Conference on Evolu-
tionary Computation Proceedings. IEEE World Congress
on Computational Intelligence (Cat. No.98TH8360), pp.
69–73, 1998.

Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stan-
ley, K. O., and Clune, J. Deep Neuroevolution: Ge-
netic algorithms are a competitive alternative for train-
ing deep neural networks for reinforcement learning.
CoRR, abs/1712.06567, 2017. URL http://arxiv.

org/abs/1712.06567.

Trinh, T. H., Dai, A. M., Luong, M.-T., and Le, Q. V. Learn-
ing longer-term dependencies in RNNs with auxiliary
losses. In Proceedings of the 35th International Confer-
ence on Machine Learning (ICML), 2018.

Wu, G., Mallipeddi, R., and Suganthan, P. N. Ensemble
strategies for population-based optimization algorithms –
a survey. Swarm and Evolutionary Computation, 44:695
– 711, 2019. ISSN 2210-6502.

Zhang, J., Lin, Y., Song, Z., and Dhillon, I. S. Learning long
term dependencies via fourier recurrent units. In Proceed-
ings of the 35th International Conference on Machine
Learning (ICML), 2018.

Zhang, Z., Zohren, S., and Roberts, S. DeepLOB: Deep con-
volutional neural networks for limit order books. IEEE
Transactions on Signal Processing, 2019.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1712.06567

