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Abstract
In many situations, we need to build and de-
ploy separate models in related environments
with different data qualities. For example, an en-
vironment with strong observation equipments
(e.g., intensive care units) often provides high-
quality multi-modal time series data, which are
acquired from multiple sensory devices and have
rich-feature representations. On the other hand,
an environment with poor observation equip-
ments (e.g., at home) only provides low-quality,
uni-modal time series data with poor-feature
representations. To deploy a competitive model
in poor-data environment without requiring di-
rect access to multi-modal data acquired from
rich-data environment, this paper develops and
presents a knowledge distillation (KD) method
(RDPD) to enhance a predictive model trained on
poor data using knowledge distilled from a high-
complexity model trained on rich, private data.
We evaluated RDPD on three real-world time se-
ries datasets and shown that its distilled model
consistently outperformed all baselines across all
datasets, especially achieving the greatest perfor-
mance improvement over a model trained only
on low-quality data by 24.56% on PR-AUC and
12.21% on ROC-AUC, and over that of a state-
of-the-art KD model by 5.91% on PR-AUC and
4.44% on ROC-AUC.

1. Introduction
Many rich-data environments encompass multiple data
modalities. For example, multiple motion sensors in a lab
can collect activity time series from various locations of a
human body where signals generated from each location
can be viewed as one modality. Multiple leads for Elec-
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trocardiogram (ECG) signals in hospital are used for diag-
nosing heart diseases, of which each lead is considered a
modality. Multiple physiological signals are measured in
intensive care units (ICU) where each type of measure is
a modality. A series of recent studies have confirmed that
finding patterns among rich multimodal data can increase
the accuracy of diagnosis, prediction, and overall perfor-
mance of the deep learning models (Xiao et al., 2018).

Despite the promises that rich multimodal data bring us, in
practice we have more poor-data environments with data
from fewer modalities of limited quality. For example, un-
like in a rich-data environment such as hospitals where pa-
tients place multiple electrons to collect 12-lead ECG sig-
nals, in everyday home monitoring devices often only mea-
sure lead I ECG signal from arms. Although deep learning
models often perform well in rich-data environment, their
performance on poor-data environment is less impressive
due to limited data modality and lower quality (Salehine-
jad et al., 2018).

We argue that given both rich- and poor-data from simi-
lar contexts, the models built on rich multi-modal data can
help improve the other model built on poor data with fewer
modalities or even a single modality. For example, a heart
disease detection model trained on 12 ECG channels in a
hospital can help improve a similar heart disease detec-
tion model trained on ECG signals from a single-channel
at home.

The recent development of mimic learning or knowledge
distillation (Hinton et al., 2015; Ba & Caruana, 2014;
Lopez-Paz et al., 2015) has provided a way of transfer-
ring information from a complex model (teacher model) to
a simpler model (student model). Knowledge distillation
or mimic learning essentially compresses the knowledge
learned from a complex model into a simpler model that
is much easier to deploy. However they often require the
same data for teacher and student models. Domain adap-
tation techniques address the problem of learning models
on some source data distribution that generalize to a differ-
ent target distribution. Deep learning based domain adap-
tation methods have focused mainly on learning domain-
invariant representations (Glorot et al., 2011; Chen et al.,
2012; Bousmalis et al., 2016). However they often need to
be trained jointly on source and target domain data and are
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therefore unappealing to the settings when the target data
source is unavailable during training.

In this paper, we propose RDPD (Rich Data to Poor Data)
to build accurate and efficient models for poor data with
the help of rich data. In particular, RDPD transfers knowl-
edge from a teacher model trained on rich data to a student
model operating on poor data by directly leveraging multi-
modal data in the training process. Given a teacher model
along with attention weights learned from multimodal data,
RDPD is trained end-to-end for the student model operating
on poor data to imitate the behavior (attention imitation)
and performance (target imitation) of the teacher model.

In particular, RDPD jointly optimize the combined loss of
attention imitation and target imitation. The loss of target
imitation can utilize both hard labels from the data and
soft labels provided by the teacher model. Here are the
main contributions of this work: (1) We formally define
the learning task from rich data to poor data, which has
many real-world applications including healthcare. (2) We
propose RDPD algorithm based on mimic learning, which
takes a joint optimization approach to transfer knowledge
learned by a teacher model using rich data to help improv-
ing a student model trained only on poor data. (3) We show
that RDPD consistently outperformed all baselines across
multiple time series datasets and achieve the greatest per-
formance improvement over the Direct model and the stan-
dard distillation model.

2. Method
The design of RDPD is shown in Fig. 1. Mathematically,
denote Xr as the multi-modal rich data with Dr modalities
that is available in training phase, and Xp as the poor data
with Dp modalities that is available in both training and
testing phases. Here the modalities in Xp are a subset of
Xr, and Dp < Dr; Xp and Xr share the same labels Y .
Our task is to build a student model Fp which only takes
Xp as input, and will benefit from knowledge transferred
from Xr.

2.1. Building Teacher Model

Although RDPD can be applied on time series in general,
in this paper we only consider regularly sampled contin-
uous time series Xr (e.g., sensor data). Assume a patient
has time series from Dr modalities, for time series in each
modality with length l, we split Xr ∈ Rl×Dr into M seg-
ments at length S, thus l = M×S. We denote multi-modal
segmented input time series as Sr ∈ RM×S×Dr .

We applied stacked 1-D convolutional neural networks
(CNN) on each segment and recurrent neural networks
(RNN) across segments. Such a design has been demon-
strated to be effective in many previous studies on multi-

Figure 1. The framework of RDPD. Given teacher model along
with attention weights learned from rich data, RDPD trains the
student model on poor data while imitating the behavior and per-
formance of teacher model. In particular, RDPD jointly optimize
the combined loss of attention imitation (behavior) and target im-
itation (performance). The loss of target imitation also concerns
both hard labels from data and soft labels provided by the teacher
model.

variate time series modeling (Ordóñez & Roggen, 2016;
Choi et al., 2016). In detail, we apply 1-D CNN with mean
pooling on each segment s(j)r ∈ RS×Dr , j = 1, · · · ,M as
given by h

(j)
r = Pooling(CNN1D(s

(j)
r )). Parameters in-

cluding number of filters, filter size and stride in CNN are
shared among segments s

(1)
r , · · · , s(M)

r , and vary across
different datasets. Then, we concatenate all convolved and
pooled segments to get Hr = [h

(1)
r , · · · ,h(M)

r ]T ∈
RM×Kr , where Kr is the number of filters in CNN1D.
Next we applied an RNN layer on Hr and denote the
output as Qr such that Qr = RNN(Hr). And Qr ∈
RM×Ur , where Ur is the number of hidden units in RNN
layer. Here we use the widely-applied self-attention mecha-
nism (Lin et al., 2017) as it is a natural choice to get better
results by taking advantage of the correlations or impor-
tance of segments. It also generates attention weights Ar

that could represent teacher’s behaviors on each segment.
The attention weights are calculated by Eq. 1.

Ar = softmax(QrW ) (1)

where W ∈ RUr×1, Ar ∈ RM×1. We then multiplied
the RNN output Qr with corresponding attention weights
Ar. The weighted output Gr is given by Gr = AT

rQr.
where Gr ∈ R1×Ur . Finally, the weighted output Gr is
further transformed by a dense layer with weights Wd ∈
RUr×C to output logits Or ∈ R1×C , Or = GrWd For
simplicity, we can summarize the teacher model Fr as in
Eq. 2: Fr takes Xr as inputs and outputs logits Or and
attention weights Ar.

Fr(Xr) = Ar,Or (2)

The objective function of the teacher model measures pre-
diction accuracy, and also provides knowledge to student
model. Typically, Or are transformed by softmax as fi-
nal predicted probabilities, which can be used as distilled
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knowledge for student model to imitate. However, sharp
distribution (e.g, hard labels) will be less informative. To
alleviate this issue, we follow the idea in (Hinton et al.,
2015) to produce more informative soft labels. Compared
with hard label, the soft label imitation has much smoother
probability distribution over classes, thus contains richer
(larger entropy) informations. Concretely, we modify clas-
sic softmax to S(x, T ) by dividing original logits Or with a
predefined hyper-parameter T (larger than 1). T is usually
referred to as Temperature. The modified softmax (shows
ith soft probability) is given by S(x, T )i = exp(xi/T )∑

j exp(xj/T )

and the soft predictions are given by Pr,T = S(Or, T ). Fi-
nally, we use cross-entropy loss as prediction loss Lteacher

(in Eq. 3) to measure the difference between soft predic-
tions Pr,T ∈ R1×C and ground truth Y ∈ R1×C . We opti-
mize teacher model via minimizing Lteacher.

Lteacher = CrossEntropy(Y ,Pr,T ) (3)

2.2. Imitating Attentions and Targets

After training teacher model on rich data, we now describe
the imitation process for the student model. For attention
imitation, we mean to mimic attention weights. For target
imitation, the student model imitates the following com-
ponents: 1) soft label that is more informative, 2) hard la-
bel that could improve performance (according to (Hinton
et al., 2015)), and 3) a trainable combination of both soft
label and hard label. Again, we start with constructing the
student model Fp using a CNN + RNN architecture, but
with fewer filters in CNN and fewer hidden units in RNN.
Similar to Eq.2, Fp takes Xp as inputs and outputs logits
Op and attention weights Ap as in Eq. 4.

Fp(Xp) = Ap,Op (4)

Attention Imitation In Eq.1 we define attention weights
to represent the influence of different time segments to the
final predictions. We assume that the attention behavior of
student model should resemble that of teacher model, and
formulate the attention imitation as below. Given Eq.2 and
Eq.4, to enforce Ap and Ar to have similar distributions,
we minimize the Kullback-Leibler (KL) divergence Latt

given by Eq. 5 to measure the information loss from distri-
bution of attention in student model Ap to distribution of
attention in teacher model Ar.

Latt = DKL(Ap||Ar) (5)

Imitating Hard Labels For hard label imitation, we opti-
mize the student model by minimizing cross entropy loss
Lhard (in Eq. 6) that measures the difference between pre-
dicted target values and ground truth values Y ∈ R1×C ,
where C is the number of target classes, Pp,1 = S(Op, 1).

Lhard = CrossEntropy(Y ,Pp,1), (6)

Imitating Soft Labels Given soft labels from Fr, we pro-
duce soft predictions Pp,T by the same temperature T on
softmax in student model Fp. Then, we optimize a cross
entropy loss Lsoft (in Eq. 7) that measures the differences
between student and teacher.

Lsoft = T 2CrossEntropy(Pr,T ,Pp,T ) (7)

Here, Pr,T is defined as before. Pp,T = S(Op, T ). Since
the magnitudes of gradients in Eq.7 is scaled by 1/T 2 as we
divided logits by T , we should multiply the soft imitation
loss by T 2 to keep comparable gradient during implemen-
tation.

Imitating Combined Label While hard labels provide cer-
tain prediction outcomes and soft labels provide proba-
bilistic predictions, the two labels may even be opposite.
To resolve the gap between the two labels, a reasonable
solution is to combine them to yield uncertain prediction
(probabilities of each class). Besides, while hard label im-
itation helps student model learn more information from
data, soft label imitation transfer more knowledge from the
teacher model (smoother distribution), each will lead to ei-
ther more bias (comes from data) or more variance (comes
from model). To leverage their benefits and make them
complement each other, we propose to minimize a linear
combination of hard labels and soft labels as Pp,comb =
S(w1Pp,1+w2Pp,T + b, 1), where w1, w2, b are learnable
parameters. For the combined imitation, we also use cross
entropy loss Lcomb (in Eq. 8) to define the loss between
Pp,comb and ground truth Y .

Lcomb = CrossEntropy(Y ,Pp,comb) (8)

2.3. Joint Optimization

Finally, for the student model to imitate attentions and tar-
gets simultaneously, we jointly optimize all loss functions
above. Since they are computed using cross entropy loss,
and we have to rectify them to get comparable loss values.
Here, we simply summed them up to get the final objective
function Lstudent given by Eq. 9.

Lstudent = Latt + Lhard + Lsoft + Lcomb (9)

3. Experiments
Datasets We used time series data including: (1) PAMAP2
Physical Activity Monitoring Data Set (PAMAP2) (Reiss
& Stricker, 2012), (2) The PTB Diagnostic ECG Database
(PTBDB) (Bousseljot et al., 1995) and (3) The Medical In-
formation Mart for Intensive Care (MIMIC-III) (Johnson
et al., 2016) in performance evaluation. Data statistics are
summarized in Table 1.

Comparative Methods 1. Teacher: Teacher model is
trained and tested on all channels. It serves as an
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Table 1. Statistics of Datasets
PAMAP2 PTBDB MIMIC-III

# subjects 9 290 9,488
# classes 12 6 8
# attributes 52 15 6
Total time series length 2,872,533 59,619,455 455,424

Sample Frequency 100 Hz (IMU) 1,000 Hz 1 per hour9 Hz (HR)

empirical upper bound of performance. 2. Direct: Direct
model is build on the partially observed data using RCNN,
without attention imitation and soft label imitation. This
model is equivalent to L = Lhard. 3. Knowledge Dis-
tillation (KD): KD (Hinton et al., 2015) model is con-
structed on the partially observed data, with soft label imi-
tation and hard label imitation. This model is equivalent to
L = Lhard + Lsoft. 4. RDPDr1: The reduced version of
RDPD without attention imitation. And the objective func-
tion would beL = Lcomb+Lhard+Lsoft. 5. RDPDr2: The
reduced version of RDPD without combined labels. This
model is equivalent to KD model with attention imitation.
And the objective function would be L = Latt + Lhard +
Lsoft. 6. RDPD: Our whole model contains all proposed
imitations. Using L = Latt + Lhard + Lsoft + Lcomb as
objective function.

Results We compared the results of RDPD against other
baselines and the reduced version of RDPD in Table 2
(PAMAP2 dataset), Table 3 (PTBDB dataset) and Table
4 (MIMIC-III dataset). RDPD outperformed other meth-
ods (except Teacher) in most cases and demonstrated the
proposed attention imitation and target imitation success-
fully improved performance of student model. The teacher
model performs best among all methods since it is trained
using a full datasets with multiple modalities. It serves
an empirical upper bound of the performance. In Table 3,
RDPDworks better than its reduced version in PR-AUC and
F1-score but not ROC-AUC. The reason is that classes in
PTBDB dataset is very imbalanced, some occasional sam-
ples in rare classes distort the final result.

4. Conclusion
In this paper we proposed to leverage the power of rich
data to improve the learning from poor data with RDPD.
RDPD learns end-to-end for the student model built on poor
data to imitate the behavior (attention imitation) and per-
formance (target imitation) of teacher model by jointly op-
timizing the combined loss of attention imitation and target
imitation. We evaluated RDPD across multiple datasets and
demonstrated its promising utility and efficacy.

Table 2. Performance comparison on PAMAP2 dataset. The task
is multi-class classification (12 classes). All contains 52 channels,
Wrist contains 17 channels signals of 1 IMU over the wrist on
the dominant arm, Chest contains 17 channels signals of 1 IMU
on the chest, Ankle contains 17 channels signals of 1 IMU on the
dominant side’s ankle.

Data Method ROC-AUC PR-AUC macro-F1
All Teacher 0.928 ± 0.014 0.708 ± 0.039 0.608 ± 0.045

Wrist

Direct 0.800 ± 0.032 0.452 ± 0.051 0.376 ± 0.049
Distill 0.825 ± 0.020 0.469 ± 0.052 0.380 ± 0.060
RDPDr1 0.837 ± 0.025 0.491 ± 0.037 0.406 ± 0.053
RDPDr2 0.836 ± 0.018 0.478 ± 0.038 0.401 ± 0.049
RDPD 0.838 ± 0.012 0.491 ± 0.045 0.425 ± 0.057

Chest

Direct 0.836 ± 0.035 0.519 ± 0.065 0.449 ± 0.069
Distill 0.868 ± 0.025 0.575 ± 0.043 0.486 ± 0.065
RDPDr1 0.872 ± 0.028 0.605 ± 0.030 0.518 ± 0.037
RDPDr2 0.879 ± 0.027 0.600 ± 0.051 0.478 ± 0.048
RDPD 0.883 ± 0.016 0.609 ± 0.052 0.529 ± 0.051

Ankle

Direct 0.811 ± 0.035 0.513 ± 0.065 0.405 ± 0.080
Distill 0.901 ± 0.015 0.621 ± 0.044 0.492 ± 0.070
RDPDr1 0.889 ± 0.021 0.581 ± 0.071 0.443 ± 0.095
RDPDr2 0.904 ± 0.019 0.629 ± 0.041 0.473 ± 0.069
RDPD 0.910 ± 0.014 0.639 ± 0.030 0.511 ± 0.033

Table 3. Performance comparison on PTBDB dataset. The task is
multi-class classification (6 classes). All contains 15 channels of
ECG signals. Lead I contains single channel Lead I ECG signal,
which is usually generated by mobile devices.

Data Method ROC-AUC PR-AUC macro-F1
All Teacher 0.737 ± 0.035 0.293 ± 0.018 0.288 ± 0.028

Lead I

Direct 0.701 ± 0.023 0.279 ± 0.017 0.164 ± 0.020
Distill 0.676 ± 0.045 0.282 ± 0.022 0.217 ± 0.016
RDPDr1 0.677 ± 0.036 0.255 ± 0.029 0.139 ± 0.027
RDPDr2 0.707 ± 0.073 0.282 ± 0.044 0.218 ± 0.024
RDPD 0.706 ± 0.075 0.293 ± 0.025 0.218 ± 0.019

Table 4. Performance comparison on MIMIC-III dataset. The task
is multi-class classification (8 classes). All contains 6 channels of
patient vital signs. BP contains blood pressure systolic and blood
pressure diastolic, which is usually monitors by house sphygmo-
manometer. HR is heart rate, RR is respiration rate.

Data Method ROC-AUC PR-AUC macro-F1
All Teacher 0.696 ± 0.011 0.281 ± 0.009 0.256 ± 0.012

BP

Direct 0.610 ± 0.016 0.204 ± 0.011 0.149 ± 0.013
Distill 0.611 ± 0.013 0.206 ± 0.007 0.150 ± 0.005
RDPDr1 0.607 ± 0.012 0.203 ± 0.003 0.148 ± 0.003
RDPDr2 0.613 ± 0.020 0.205 ± 0.009 0.147 ± 0.007
RDPD 0.614 ± 0.018 0.207 ± 0.010 0.150 ± 0.006

HR

Direct 0.556 ± 0.019 0.176 ± 0.013 0.089 ± 0.042
Distill 0.564 ± 0.021 0.175 ± 0.012 0.109 ± 0.030
RDPDr1 0.566 ± 0.010 0.178 ± 0.004 0.132 ± 0.005
RDPDr2 0.571 ± 0.011 0.176 ± 0.008 0.123 ± 0.016
RDPD 0.581 ± 0.014 0.182 ± 0.004 0.130 ± 0.010

RR

Direct 0.570 ± 0.019 0.176 ± 0.012 0.109 ± 0.039
Distill 0.614 ± 0.023 0.201 ± 0.009 0.162 ± 0.015
RDPDr1 0.611 ± 0.014 0.202 ± 0.007 0.160 ± 0.016
RDPDr2 0.614 ± 0.017 0.205 ± 0.006 0.169 ± 0.010
RDPD 0.619 ± 0.022 0.207 ± 0.008 0.169 ± 0.007
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