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Abstract

In this work we study the generalization capabili-
ties of fully-connected neural networks trained in
the context of time series forecasting. Time series
do not satisfy the typical assumption in statistical
learning theory of the data being i.i.d. samples
from some data-generating distribution. We use
the input and weight Hessians, that is the smooth-
ness of the learned function with respect to the
input and the width of the minimum in weight
space, to quantify a network’s ability to gener-
alize to unseen data. While such generalization
metrics have been studied extensively in the i.i.d.
setting of for example image recognition, here
we empirically validate their use in the task of
time series forecasting. Furthermore we discuss
how one can control the generalization capability
of the network by means of the training process
using the learning rate, batch size and the number
of training iterations as controls.

1. Introduction
Forecasting time series is an exceptionally difficult task
due to the risk of overfitting on the dataset, in particular
in the case of overparametrized networks (Zhang et al.,
2016), (Zhang et al., 1998). In other words, when using
the past to predict the future one has to be certain to have
succeeded in extracting a signal from the past that will
propagate to the future, and not simply fitted a complex
function on the past. Neural networks, while being powerful
function approximators that are relatively easy to optimize,
can lead to poor extrapolation in time series forecasting due
to the latter. Due to their ability to approximate almost any
function it is of the essence to ensure that the network is
learning the signal of interest instead of the noise (Zhang
et al., 2016)(Geirhos et al., 2018).

There are different ways of measuring the learning capa-
bility, or complexity, of a neural network (Bartlett et al.,
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2017), (Neyshabur et al., 2015), (Li et al., 2018) (Arora
et al., 2018). In this work we focus on sensitivities with
respect to the input and weights. The output sensitivity with
respect to the inputs has been succesfully used as a metric
for generalization capabilities in an i.i.d. setting (Novak
et al., 2018). It has also been proposed that the Hessian
with respect to the weights can be used as a measure for
generalization (Hochreiter & Schmidhuber, 1997) (Smith &
Le, 2018) (Sagun et al., 2018). The model complexity can
also be influenced using the training algorithm by biasing
the model into configurations that are more robust to noise
(Arora et al., 2019) (Gunasekar et al., 2018)(Neyshabur
et al., 2017). In particular, it has been observed that certain
parameters of stochastic gradient descent (SGD) can be used
to control the generalization error and data fit (Jastrzkebski
et al., 2017) (Seong et al., 2018) (Chaudhari & Soatto, 2018)
(Li et al., 2019).

The novelty of our contribution consists in a thorough em-
pirical analysis of what the capability to generalize means
for time series forecasting with fully-connected neural net-
works. While generalization capabilities for i.i.d. datasets
(e.g. images) have been studied extensively, the problem
is more complex for the time series: the dataset is can be
much smaller, the signal-to-noise ratio might be low and
the distribution can be non-stationary. Understanding what
it means for a neural network to have good generalizibil-
ity, i.e. learning a consistently present pattern instead of
overfitting on noise or on a changing pattern, and how this
can be achieved through the learning algorithms will be the
main task of this paper. In the first part of this work we
present some theoretical insights regarding generalization
and the input and weight Hessians, while in the second part
numerical results for various artificial and real-world time
series are presented.
2. Generalization
Let the inputs to the neural network be given by x ∈ Rn0 .
Let W (l) ∈ Rnl×nl−1 be the weight matrix in layer l with
element w(l)

i,j connecting neuron i in layer l and j in layer
l−1. Definew as the vectorized total weights in the network,
so that w ∈ Rd with d = n0n1 + n1n2 + ... + nL−1nL,
with d thus being the dimension of the weight space. In the
rest of this paper the dimension Rd refers to column vectors.
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Each layer l = 1, ..., L outputs,

a(l) = f(z(l)) = f
(
W (l)a(l−1)

)
,

where f(·) is the non-linear activation function, in the first
layer a0 = x and the network output is given by ŷ(x,w) =
zL. The network is trained by optimizing the mean squared
error (MSE) loss, L̂(x,w, y) = 1

N

∑N
i=1

(
ŷ(xi, w)− yi

)2
,

where (xi, yi) for i = 1, ..., N is the train dataset and
ŷ(xi, w) the neural network output. Generalization is the
relationship between a trained networks’ performance on
train data versus its performance on test data. This is a
highly desirable property for neural networks, where ideally
the performance on the train data should be similar to the
performance on similar but unseen test data. In general, the
generalisation error of a neural network model ŷ(x,w) can
be defined as the failure of the hypothesis ŷ(x,w) to explain
the dataset sample. It is measured by the discrepancy be-
tween the true error L and the error on the sample dataset
L̂, i.e. L(x,w, y) − L̂(x,w, y). This can also be cast in
terms of noise robustness, i.e. making sure the network is
not overfitting on noise. In this case we require, for some
input perturbation ε ∈ Rn0 , the change in the loss function
to be small,

|L(x+ ε, w, y)− L(x,w, y)| < δ. (1)

2.1. The weight Hessian

The first metric for the generalization capabilities will be
the weight Hessian of the loss function with respect to
the weights Hw(L) ∈ Rd×d which has elements hwij =
∂wi

∂wj
L(x,w, y).

Controlling the weight Hessian It has been mentioned
in prior research (Jastrzkebski et al., 2017), (Mandt et al.,
2017), (Smith & Le, 2018), (Chaudhari & Soatto, 2018) that
a relationship exists between the test error and the learning
rate and batch size used in the SGD updating scheme with
batch size M . Under an i.i.d. assumption on the data we
can envoke the central limit theorem to rewrite the updates
of SGD as, wt+1 = wt − ηg − η√

M
ε, where ε ∼ N (0,K)

with ε ∈ Rd. If convergence has been reached, i.e. (1) holds,
by a (second-order) Taylor expansion method for the loss
function evaluated on the full training data we can obtain an
expression for the weight Hessian,

Hw(L(wt)) ≈
δ + 2∇wL(wt)T

(
g − 1√

M
ε
)

η
∣∣g − 1√

M
ε
∣∣2 ,

where∇wL(w) ∈ Rd denotes the gradient of the total loss.
From this expression we see that the Hessian at convergence
is small if a large learning rate or a small batch size has been
used.

2.2. The input Hessian

Besides the weight Hessian, the input Hessian will also
be used as a metric for out-of-sample performance. This
measures the sensitivity of the output function with respect
to the changes in the input data, such that a Hessian with
small eigenvalues means a smoother output function. Define
the elements of the input Hessian Hx(L) ∈ Rn0×n0 of an
input x ∈ Rn0 as hxij = ∂xi∂xjL(x,w, y). The Hessian is
averaged over the data samples xi, i = 1, ..., N in the train
dataset in order to obtain an average sensitivity metric over
the input space.

Relation between input and weight Hessian The output
of a two-layer neural network with added input noise can be
written as,

ŷ(x+ ε, w) =W (2)f((W (1) + ε̃)x)

= (W (2) + ε̃2)f((W (1) + ε̃1)x),

for ε̃ = W (1)εxT /||x||22, and some ε̃2 ∈ R1×n1 and such
that ε̃1 < ε̃. In other words, noise in the input can be rewrit-
ten as noise in the weights. Let ε̂1 , ε̂2 be the vectorized
forms of ε̃1, ε̃2. Then,

L(x+ ε, w, y)

= L(x,w, y) + [(ε̂1)T , (ε̂2)T ]∇wL(x,w, y)

+
1

2
[(ε̂1)T , (ε̂2)T ]Hw(L(x,w, y))[(ε̂1)T , (ε̂2)T ]T .

From this expression we see that if the Hessian with respect
to W (1) is not sufficiently small, for a deeper network the
remaining noise can be damped by sufficient flatness of the
loss function in the directions of W (2).

The effects of SGD Consider now a first-order Taylor
expansion in x for some noise ε̃

∇wL
(
x+

1√
M
ε̃,w, y

)
≈ ∇wL (x,w, y) +

1√
M
∇w ε̃T∇xL (x,w, y)

=: ∇wL (x,w, y) +
1√
M
ε.

In other words, the SGD update rule can be rewritten as,
wt+1 ≈ wt − ηg̃, where

g̃ := E(x,y)∼D

[
∇wL

(
x+

1√
M
ε̃,w, y

)]
.

Therefore, the noise from the stochastic gradient descent can
be related to noise in the input and SGD can be interpreted
to minimize a jittered cost function. In turn, by a derivation
similar to (Reed et al., 1992), a jittered cost function can
be related to optimizing a regularized loss function, so that
SGD can be seen to impose smoothness assumptions on the
output function with respect to the input.
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2.3. How low can we go?

As was shown in the previous work, under certain – albeit
restrictive (i.e. i.i.d. data) – assumptions on the deep neural
network, the loss surface is given by a Gaussian random field
on a high-dimensional space (Choromanska et al., 2015).
For the high-dimensional Gaussian random fields, as shown
in (Becker et al., 2018), the lower the train loss the lower
the entropy and thus the sharper the minima. In other words,
wider minima lie at higher loss values in the loss surface. A
higher complexity solution, i.e. one with lower entropy, can
also be expected to be less robust to noise. Optimization in
neural networks can then be seen as finding an optimal trade-
off between the data fit (i.e. how low in the loss surface we
are) and the solution complexity (i.e. how high the entropy
in loss space is, or how robust the solution is to noise).
This trade-off is sometimes referred to as the information
bottleneck (Achille & Soatto, 2018).

Dependence on noise Consider a time series yi, i =
0, ..., N with a signal to noise ratio of (1− α) : α. Suppose
the neural network output should be resistant to noise in
the signal. In the non-i.i.d. setting also to certain patterns
present in one part of the series but not in another. Here,
we mostly focus on robustness to noise, and assume that
the non-i.i.d. property comes from the time dependence
and the noise which can change in distribution. In this
case the loss function should satisfy the following objective,
|L(x + αε,w, y) − L(x,w, y)| < δ. Relating this to the
train and test set, we assume that x+αε is the test data with
a noise component different from that in the train data x.
By a Taylor expansion over the input variable x one obtains
after taking expected values,

E[L(x+ αε,w, y)−L(x,w, y)]

≈ 1

2
α2Tr (Hx(L(x,w, y))) ,

where we have used the fact that εi ∼ N (0, 1) i.i.d.. From
this it follows that, Tr (Hx(L(x,w, y))) = 2 δ

α2 . In other
words, the amount of noise in the input the neural network
has to be resistant to is inversely proportional to the input
(and thus weight) Hessian.

Obtaining better generalizable minima As discussed in
the previous sections, certain hyperparameters (see e.g. (Jas-
trzkebski et al., 2017)) can be used to control the trade-off
between generalization and complexity. In particular, the
learning rate can result in wider minima due to a higher
noise coefficient in SGD (as shown in Section 2.1); simi-
larly the batch size results in a higher amount of noise in
SGD, and can be related to a smaller weight Hessian; lastly,
the number of iterations determines how low we go in the
loss surface, and by a theoretical derivation in (Becker et al.,
2018) it can be shown that higher points in the loss surface
have higher entropy and thus can be more robust to noise.

We will study these effects in more detail in the numerical
section.
3. Numerical results
As metrics we will use the traces of the weight and input
Hessians, where in the case of the input Hessian the value
is averaged over the samples in the train dataset.

3.1. Artificial data

We consider a network of 10 hidden layers with 500 nodes
per layer and 10.000 iterations are used; the network input
consists of (yi−4, ..., yi) and is trained to forecast yi+1. The
dataset consists of 100 samples.

Random noise An overparametrized neural network can
fit random noise almost perfectly. In Figure 1 we show
that as the MSE decreases, the input and weight Hessians
increase. In other words, as expected, these metrics measure
the complexity of the solution.

Figure 1. The convergence of the network for the input Hessian
(R) and the weight Hessian (R) on random noise data; the loss
decreases with iterations, but the input and weights Hessians in-
crease; these can indicate when a network starts overfitting on
the noise and be used to make a trade-off between data fit and
complexity.

Sine with noise Consider now the function yi =
sin(0.1ti)+ cεi, with ti ∈ {0, 1, ..., 100} and εi ∼ N (0, 1).
We consider the effects of the hyperparameters on the gen-
eralization error. From Figure 2 we observe that a smaller
number of iterations or a lower batch size results in general
in wider minima, which in turn give a smaller generalization
error. In Figure 3 we plot the test error for the learning rate.
Using a larger learning rate results in wider minima while a
smaller learning rate tends to converge to sharper minima.
While the Hessian is correlated with the test error, a too high
learning rate can also underfit the data. 1

3.2. Real-world data

We will use a network with 2 hidden layers and 100 nodes
per layer.
Index forecasting Financial data is highly non-linear,
non-stationary and has a very low signal-to-noise ratio. The
input data will consist of n = 5 historical daily absolute

1We used batch gradient descent and scaled the gradient by its
L2 norm in order to avoid the gradient size influencing the minima
width.
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Figure 2. The influence of the hyperparameters, number of itera-
tions for c = 0.1 on the weight Hessian (T) and batch size for
c = 0.3 on the input (CB) and weight (B) Hessian on the gener-
alization error. As expected, a smaller number of iterations or a
lower batch size results in lower Hessians which in turn result in
lower generalization error.

returns of the S&P500 index, the CBOE 10 year interest
rate, and the volatility index. In Table 1 we present the
MSE and hit rate (computed as the number of up or down
movements predicted correctly) for different hyperparame-
ters averaged over 20 sampled networks. Financial returns
are highly noisy and non-linear and distinguishing the signal
in the data from noise remains challenging. Nevertheless
the results show that the number of iterations and the batch
size seem to be able to bias the model into minima that have
more (additive) noise resistance and the Hessians seem to
indicate the model complexity and thus noise resistance.

Table 1. The MSE and hit rate for different batch sizes and
iteration numbers for financial data. The batch size and number
of iterations seem to be able to control the MSE and hit rate. The
input Hessian and the weight Hessian (here the sum of first and
last layer traces) correspond with the errors.
Nit Nb MSE HIT RATE Tr(Hx) Tr(HW )

10000 100 2.80 0.49 0.73 50.76
5000 100 2.65 0.513 0.73 50.34
10000 300 2.76 0.500 0.83 52.07
5000 300 2.71 0.505 0.74 51.1

Weather forecasting Here we train a network for predict-
ing the daily minimum temperature in Melbourne, Australia.

Figure 3. The influence of the learning rate on the generalization
error for c = 0.3 and the input (T) and weight (B) Hessian. A
smaller learning rate results in higher Hessians, however the effect
of the learning rate on test set performance seems less visible than
that of the other hyperparameters.

The input data will consist of n = 20 historical daily ober-
vations of the temperature. The results for the MSE for
different training hyperparameters are presented in Table 2
(again averaged over 20 networks). As expected, training
with fewer iterations and using smaller batch sizes results
in a smoother output function with respect to the input and
causes the training algorithm to converge to wider minima.

Table 2. The MSE for different batch sizes and iteration num-
bers for weather data. A higher trace of the input or weight
Hessian corresponds to a worse test set MSE due to overfitting on
the noise. As usual, training longer and using larger batch sizes
resuls in more overfitting.
Nit Nb MSE Tr(Hx) Tr(HW (1)

) Tr(HW (3)

)

10000 10 0.44 0.078 6.05 34.9
5000 10 0.36 0.023 5.85 27.5
10000 100 0.49 0.11 36.7 40.2
5000 100 0.36 0.030 38.4 31.9
10000 200 0.50 0.10 42.6 40.9
5000 200 0.37 0.032 56.7 31.7

4. Conclusion
In this work we studied the generalization capabilities of
neural networks trained for the purpose of time series fore-
casting. We showed that there is a correspondence between
good generalization capability and small traces of the in-
put and weight Hessians of the loss function at the minima
found after training. We showed that the learning rate, the
batch size and the number of iterations used in the training
algorithm to bias the network into minima that posess a cer-
tain structure. The typical assumption in statistical learning
theory of having i.i.d. samples from some data-generating
distribution does not hold in time series, and while in this
work we gave empirical insight into the performance on non-
i.i.d. data it will be of interest to derive theoretically the loss
surface structure for non-i.i.d. data (e.g. similar to (Choro-
manska et al., 2015)) and studying the link between the
generalization error and the Hessian (see e.g. (Kuznetsov &
Mariet, 2019)). Understanding how to make deep learning
algorithms work in order to generalize in a non-i.i.d. setting
is still a relevant and active topic of research which we aim
to address in future work.
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