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Abstract

Simulation of the real world is a widely re-
searched topic in many different fields, and the
automotive industry in particular is very depen-
dent on real world simulations. These simula-
tions are needed in order to prove the safety of
advance driver assistance systems (ADAS) and au-
tonomous driving (AD). In this paper we propose
a deep learning based model for generating time
series outputs from sensors used in autonomous
vehicles. We implement a Recurrent Conditional
Generative Adversarial Network (RC-GAN) con-
sisting of Recurrent Neural Networks that use
LSTMs in both the generator and the discrimina-
tor in order to generate sensor errors described as
time series that exhibit long-term temporal corre-
lations. The network is trained in a sequence-to-
sequence fashion where we condition the model
output with time series describing the environ-
ment, which enables the model to capture spatial
and temporal dependencies. The RC-GAN is used
to generate time series describing the errors in a
production sensor on a data set collected from
real roads, and yields significantly better results
as compared to previous works on sensor mod-
elling.

1. Introduction

A lot of progress is continuously being made in the race
to autonomy in the automotive industry. Many advance
driver assistance system (ADAS) technologies, such as lane
keeping assist, collision warning and emergency braking are
already implemented in vehicles today and are foreseen to
reduce the risk of accidents on roads. In order to make a safe
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decision, the vehicles are installed with a lot of different
sensors such as cameras, radars and lidars.

In order to guarantee the safety of the autonomous vehi-
cles with a certain confidence, billions of miles have to be
driven in order to provide a good statistic for a low fatality
rate (Kalra & Paddock, 2016). This is a very time con-
suming and expensive task which cannot be done in reality.
Companies producing software for ADAS and autonomous
driving (AD) thus resort to virtual verification, where mod-
els of the environment and sensors are made to match reality.
Modelling a sensor can be done in many different ways on
different levels. For example, it is possible to model the
raw detections of a sensor. In this paper we focus on object
level data, which is the output of sensor fusion. Modelling
sensor characteristics such as sensor errors is a challenging
problem because it requires models that can capture stochas-
tic behaviours of sensors. Furthermore, it is important to
understand how the errors correlate with different traffic
scenarios and settings.

Generative models are a fundamental part in a lot of different
machine learning algorithms and the attention to generative
models is increasing, a lot due to their capability of mod-
elling underlying statistical structures of high dimensional
signals. Especially in computer vision, Generative Adver-
sarial Networks (GANs) (Goodfellow et al., 2014) have had
great success recently generating realistic high-quality im-
ages. Inspired from this, in this paper we develop a deep
learning based sensor model capable of modelling the real-
valued time series data describing errors in sensor outputs
using adversarial networks.

2. Related work

The work in this paper is related to previous works on sen-
sor modelling and also to Generative Adversarial Networks
and Recurrent Neural Networks for time series generation
and prediction. Since the introduction of GANs, they have
shown good results in generating realistic samples in many
different applications (Isola et al., 2017; Ledig et al., 2017;
Reed et al., 2016), where tasks involving images are pre-
dominant. However, the amount of research for generating
continuous real-valued time series using GANSs is limited as
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compared to image generation. GANs have previously been
used for sequential data generation, but these typically focus
on discrete outputs such as in language processing (Yu et al.,
2017). In (Mogren, 2016) the author uses an RNN based
GAN in order to generate classical music in the form of
continuous sequences. In (Esteban et al., 2017) the authors
develop a similar RNN based GAN to generate continuous
medical time series. In (Donahue et al., 2018) they modify
already existing image generation methods to operate on
audio waveforms, which is a different approach than using
GANSs for modelling multivariate time series.

On the topic of sensor modelling, an Autoregressive Input-
Output Hidden Markov Model (AIO-HMM) for generation
of real-valued time series describing sensor errors has re-
cently been proposed in (Listo Zec et al., 2018). Given
input features describing the environment, the authors gen-
erated time series similar to that exhibited by a sensor. The
AIO-HMM is an extension to the standard HMM, where
the next output is conditioned on the previous output and
where both the outputs and the hidden states are conditioned
on an input vector. However, there is no internal memory
in the AIO-HMM and it has some trouble modelling long
sequences. Given the recent success of GANs, we imple-
ment a modified version of the RC-GAN as described in
(Esteban et al., 2017) and show that it is possible to improve
the realism of the generated time series for using an internal
memory.

3. Problem Overview

The output from sensors used in ADAS and AD considered
in this paper is in the form of dynamic state vectors over
time, describing variables such as object position, velocity
and acceleration relative to the host vehicle collecting the
sensor data. These outputs from production sensors inher-
ently exhibit noise and inaccuracies. The main contribution
in this paper is developing a model for generating synthetic
but realistic production sensor outputs, conditioned on the
environment. Particularly, we focus on modelling the time
series describing the longitudinal and lateral position and
velocity errors from the sensors. A trained model can then
be used in Computer Aided Engineering (CAE) tools for
virtual testing.

In the same fashion as in (Listo Zec et al., 2018), we use a
radar and camera fusion based production sensor setup in
our experiments. Moreover, the ego vehicle is also equipped
with a Velodyne lidar HDL-64E which is used as a reference
system. The lidar data is processed using object classifica-
tion and tracking algorithms and the output is in the form
of object lists with estimated properties like position and
speed. We define the production sensor error as the differ-
ence between the production sensor and the reference sensor
outputs for every detected object over time.

In order to calculate the error we need to associate each
production sensor object with a corresponding reference
system object. We do this by using an offline matching
algorithm (Florbick et al., 2016), where output from the
algorithm is a matrix consisting of object properties in the
form of time series for each object. The data set that we use
consists of sensor outputs collected from drives on European
highways, spanning over 12,000 multivariate time series.
The test set contains around 2,000 multivariate time series.
The average length of all time series is 197 frames with
a minimum of 50 and maximum of 828 frames. In this
paper we focus on results regarding the error of longitudinal
positions.

4. Model

4.1. Generative Adversarial Networks

A Generative Adversarial Network (GAN) is a generative
neural network that aims to generate samples given a dis-
tribution pgu, () of the training data. In the GAN archi-
tecture there are two different neural networks trained si-
multaneously, a generator G(z;0,) and a discriminator
D(x;04), which have conflicting objectives. The gener-
ator learns a distribution p, over the data x, whereas the
goal of the discriminator is to discriminate between the
synthetic data G(z) generated by G and the real data x.
In practice, this is a minimax game problem described
as ming maxp By p,.(2)[10g D(2)] + E.\p_ () [log(1 —
D(G(z)))] with p,(z) as a prior over the input noise vari-
ables.

4.2. Recurrent Conditional Generative Adversarial
Networks

The model implemented in this paper is based on the net-
works described in (Esteban et al., 2017). The first dif-
ference from the original GAN that the authors propose
in their paper is that both the generator and discrimina-
tor are replaced by RNNs with LSTM units. The sec-
ond change is that the output from both the generator
and the discriminator is conditioned on an input vector
y, which makes it possible for the GAN to learn the
conditional probability distribution p(x|y) as described
in (Goodfellow et al., 2014). The minimax problem is
then described as ming maxp Egp,,. (x|y) [10g D(x|y)] +
sy, (21 log(1 — D(G(2]y)ly))]-

In this paper, we do not generate labels as done in (Esteban
et al., 2017). In our case, G and D are conditioned on
multivariate time series which are predictive of the response
variable, e.g. angle, heading and speed. D takes as input
either a real or synthetic time series, and outputs a softmax
probability at each time step classifying if the sample is real
or not. Figure 1 depicts the network architecture used in this
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paper.

One main change in our model as compared to (Esteban
et al., 2017) is that we isolate the latent noise to its own
RNN in G. The second main change is that skip connec-
tions are added, connecting the input condition directly to
a fully connected layer before the output neuron(s). This
allows the generator to predict from both memory and cur-
rent information. The generator thus consists of two sets of
RNNSs, one that the latent vector z; is fed to and one that
the conditional input is fed to. The output from both RNNs
and the skip-connected condition data are concatenated and
fed into a fully connected layer and the final output is a
linear activation. By isolating z; it is possible to control the
amount of noise that is applied to the output in much greater
detail through varying the distribution that z; is sampled
from, the network size and the size of z;.
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(a) Generator network (G). It takes
input from a latent space as well as
condition data y, at each time frame.
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(b) Discriminator network (D). It
takes either a real or synthetic time
series together with the condition
data y, as input at each time frame.

Figure 1. The architecture of the generator (top) and discriminator
(bottom).

The discriminator consists of a structure where data point(s)
from either a real or synthetic time series x; is being con-
catenated with the corresponding condition data y, at each
time frame and is fed to an RNN-LSTM network. A skip
connection is also used in this network. By adding the
skip connection for y, to the fully connected layer for both
networks, a more stable and faster learning was obtained
during training. The best model in this paper consists of
two-layered RNNSs in both the generator and the discrimina-

tor.

5. Model evaluation

Evaluation of generative models in general and GANs in
particular is an open research question that is far from solved
(Theis et al., 2015). Current evaluation still relies on hu-
man validation to asses the quality of the generated sample.
Further, in our case we seldom have more than one realisa-
tion from an underlying unknown stochastic sensor model.
Using only one sample makes it difficult to draw any rea-
sonable conclusions of the model and its quality.

We evaluate our model by using a test set including around
2,000 multivariate time series of lengths between 50 and
828. For each error sequence in the test set, we input the
corresponding multivariate time series into the model and
generate 100 synthetic sequences. In order to evaluate if
different parts of the signals, such as large errors, are rep-
resented with the right density in the generated sequences,
we use the Jensen-Shannon distance (JSd) (Briét & Har-
remoés, 2009). Further, we also use the root mean squared
error (RMSE) to assess temporal dependencies. In addi-
tion to this, we also use the JSd between the first difference
distributions of the test set and the generated samples.

6. Results and Discussion

We randomly initialised and trained several different RC-
GANSs and evaluated each model using JSd and RMSE. In
Figure 2, three different test sequences together with cor-
responding generated sequences from the best performing
model are visualised. These sequences were chosen to il-
lustrate different behaviour in the data and how the model
performs in these cases. The test sequence of the longitudi-
nal position error is plotted with a black line, while the mean
of 100 generated sequences from the RC-GAN is plotted
with a blue line. The filled blue area is the 95th percentile of
all generated sequences. All trained models got a substantial
initial transient for all generated time series. We see that
other than the initial transient, the generated sequences be-
have similar to the real sequences. This transient makes the
RC-GAN behave poorly in generating the first time frames
as seen in Figure 2. When the network has been fed enough
time frames, it starts to be able to grasp the context of the
sequences and the output starts to look more real.

We also trained the generator network G using the mean
absolute error (MAE) as loss function instead of the regular
GAN training setting, i.e. without the discriminator. These
two models and the AIO-HMM are compared in Table 1. In
Figure 3, the distribution of generated time series for each
test sequence is shown in orange and the distribution of the
test sequences is shown in blue. Figure 3 and Table 1 show
that the distributions are very similar with a JSd of 0.082.
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Table 1 shows that the RC-GAN beat the AIO-HMM in
terms of RMSE, but that G yielded the best results. However,
G performed very poorly in terms of JSd overall, not being
able to model the underlying distribution. We conclude
that the RC-GAN is the best performing model. By using
many non-linear transformations and internal memory, the
it is able to learn rich representations and model long-term
dependencies better than the other models.

—— True sequence

0.25- —— Synthetic sequence mean
95th percentile
0.20-
5 0.15-
=
=
[H)
©o.10-
o}
0.05-
0.00-
0 20 40 60 8 100 120
Time index
(@
0.25-
—— True sequence
—— Synthetic sequence mean
0.20- 95th percentile
0.15-
=
(=]
=
o 0.10-
o
o
|
0.05-
0.00-
_005 : [l U I " U i i
0 20 40 60 80 100 120
Time index
(b)
0.5- —— True sequence
: —— Synthetic sequence mean
95th percentile
0.4-
.
2o3
[}
a
g
0.2
0.1-
0.0- | ' | | : '
0 25 50 75 100 125 150
Time index
(©

Figure 2. Time series describing the long. position error for three
tracked objects from the test set (black) together with the mean
(blue) and 95th percentile (filled blue) of the 100 generated time
series from the RC-GAN. The vertical axis has been re-scaled due
to sensitive data.
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Figure 3. Histogram of all time series from the test set (blue) to-
gether with the the generated time series from the RC-GAN (or-
ange) for each test sequence. The vertical axis shows a normalised
frequency and the horizontal axis has been re-scaled due to sensi-
tive data.

Table 1. Table showing the results for the AIO-HMM, G and the
RC-GAN.

Model JSd [ 1°¢ diff JSd | RMSE
AIO-HMM | 0.13 | 0.15 0.67

G (MAE) | 0.342 | 0.550 0.392
RC-GAN | 0.082 | 0.110 0.503

7. Conclusions

In this paper, a Recurrent Conditional Generative Adversar-
ial Network (RC-GAN) has been proposed for modelling
real valued time series describing sensor outputs that are
used in autonomous driving. The RC-GAN is able to handle
time series of arbitrary length and also having the ability to
tune the noise levels to the specific data distribution that is
wished to be learned. As it is possible to run the model on
arbitrary long sequences it is also possible to train the net-
work on data sets containing sequences of different lengths,
which we do in this paper. The proposed model is able to in
a stable way generate time series with long-term temporal
dependencies using internal memory and learns the under-
lying real data distribution. In particular, we yield better
results for generating time series for sensor outputs than
those reported in previous work by a great margin.
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