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Abstract
In many forecasting applications, it is important
to predict an overall trajectory within a period
of time, i.e. a forecasting horizon. Various deep
neural network models have been introduced to
tackle the so-called multi-step forecasting prob-
lem. However, most existing approaches either
recursively apply a powerful but complex single-
step model or explicitly presume that a relatively
simple yet restrictive latent process determines
the temporal structure. In this paper, we propose
a new framework that combines the advantages
of both categories and avoids their weaknesses.
We maintain a complex latent process in which
each state is implicitly connected through a deep
temporal convolutional network with gated recur-
rent structures between layers in substitution of
vanilla recurrent networks. Further, multi-step
predictions are made simultaneously by taking
advantage of known features such as datetime.
We evaluate our model on a number of public
benchmark datasets with forecasting horizons of
varying length to demonstrate not only its out-
standing performance in terms of accuracy but
also faster evaluation with its fully-parallelizable
architecture.

1. Introduction
Multi-step ahead forecasting is a challenging but critical
task with various practical applications, from resource man-
agement to business decision making. The forecasting prob-
lem is essentially a probabilistic sequence modeling task in
which the goal is to capture the stochastic evolution of a time
series. Among a large number of traditional methods, State
Space Models (SSMs) and AutoRegressive (AR) models are
usually preferred. Recently deep neural networks have been
a powerful workhorse to instantiate these methods. Most
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existing works employ a Recurrent Neural Network (RNN)
(Lai et al., 2018; Li et al., 2017; Yu et al., 2017; Flunkert
et al., 2017) or a Temporal Convolutional Network (TCN)
(Borovykh et al., 2017) to model an AR process. These
approaches decompose the multi-step forecasting task into
a number of single-step predictions where a sequence of his-
tory is mapped to one prediction at each time step. Although
they are able to accommodate extremely complicated dy-
namics, a large neural network has to be applied recursively
to obtain multiple steps of predictions, which is computa-
tionally expensive and difficult to parallelize. In addition,
these methods can propagate error from one prediction to
the next due to dependence among steps (Fox et al., 2018).
Some works extend traditional linear Gaussian SSMs via
nonlinear neural networks. One approach is to replace linear
transition with Multi-layer Perceptrons (MLPs) (Krishnan
et al., 2017) or RNNs (Chung et al., 2015). (Fraccaro et al.,
2016) instead incorporates deterministic hidden states of an
underlying RNN into the latent process. In contrast, (Ranga-
puram et al., 2018) keeps the linear Gaussian structure but
uses an RNN to specify the transition parameters.

We propose a novel framework that fuses the advantages of
both SSMs and AR models. The framework introduces a
latent state at each time step within the forecasting horizon.
It employs a novel Layer Recurrent TCN (LRTCN) en-
coder, which maps a range of observations to a stochastic
latent state in an autoregressive fashion. It captures tempo-
ral patterns and long-term dependencies in the history with
TCNs and then implicitly restores the temporal order with
recurrent connections between TCN layers. Furthermore,
we replace sequential latent process with a straightforward
translation step by taking advantage of known temporal
features so that multiple predictions can be made in parallel.

2. Methodology
In multi-step ahead forecasting tasks, given a sequence of
observations x1:t, the goal is to predict τ steps in the future,
i.e. xt+1:t+τ . We call x1:t the observed history and τ the
forecasting horizon. Formally, we want to model a condi-
tional predictive distribution p(xt+1:t+τ |x1:t). State Space
Models introduce a series of latent state variables zt+1:t+τ

to encode temporal patterns (Hyndman et al., 2008). They
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decompose the predictive model into three modules:

zt+i−1 ∼ p(zt+i−1|x1:t+i−1);

zt+i ∼ p(zt+i|zt+i−1);

xt+i ∼ p(xt+i|zt+i);
(1)

for i = 1, 2, · · · , τ . Here zt+i−1 ∼ p(zt+i−1|x1:t+i−1) is a
filtered posterior distribution of zt+i−1 that summarizes the
history. p(zt+i|zt+i−1) models a transition mechanism that
determines the latent dynamic. p(xt+i|zt+i) is an emission
system that produces predictions conditioned on the corre-
sponding latent state at each step. We propose to replace
the recursive latent dynamic p(zt+i|zt+i−1) in (1) with a
straightforward translation from zt

zt+i ∼ p(zt+i|zt, et+1:t+i), i = 1, · · · , τ, (2)

by taking advantage of a series of known covariates et+1:t+i

that indicate common patterns such as daily or weekly sea-
sonality and a stochastic encoding of given history zt. The
translation is intuitively a guess based on our knowledge
about the impact of various factors inside the covariates
upon the current state. For example, suppose that zt carries
the information about level and trend at time step t, one can
estimate the level at a future time step with the elapsed time
from t contained in covariates. This estimation is reasonable
as long as the patterns in the past remain stationary within
the forecasting horizon, which is a common assumption in
forecasting.

Recent findings have shown that a single zt might be ignored
by the translation (Bowman et al., 2015; Yang et al., 2017).
To alleviate this, we employ a modified translation (4) with
dependence on x1:t and thus get the following predictive
process:

zt ∼ p(zt|x1:t); (3)
zt+i ∼ p(zt+i|zt;x1:t, et+1:t+i); (4)
xt+i ∼ p(xt+i|zt+i), i = 1, · · · , τ. (5)

From a Bayesian perspective, we call (4) a prior network,
because it models priors over the latent states before we
observe the ground truths within the horizon. We also name
(5) an emission network as in SSMs. Furthermore, com-
bining the prior network and the emission network makes
a generative network because it describes the generative
process of the time series.

Since exact inference for (1) is intractable, the model can-
not be learned by directly maximizing the likelihood of
ground truths. Stochastic variational inference (Hoffman
et al., 2013) provides an alternative that maximizes a lower
bound of likelihood by introducing an inference network to
approximate the latent posterior with another probabilistic
model q(zt+i|x1:t+i). Note that (3) has the same depen-
dence structure as the inference network when i = 0, as it
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Figure 1. Graphical view of inference network (left) and generative
network (right). Plain circles are latent states, shaded circles are
observable data, and diamonds are deterministic history. The
approximate posterior of zt+i is conditioned on x1:t+i, while the
prior only depends on x1:t and zt. Dashed lines connect priors
and their posterior counterparts.

is also a filtered posterior of latent state at t. Hence we also
apply the inference network to (3).

We use deep neural nets to parameterize all networks above.
An overview of the framework is illustrated in Figure 1.

2.1. Emission Network

The emission network parameterizes the conditional distri-
bution (5) through a neural network with learnable param-
eters θd. The type of distribution can be chosen with flex-
ibility according to data being modeled. For example, we
can employ negative binomial distribution for positive count
data and beta distribution for percentage data (Flunkert et al.,
2017). For simplicity, we only illustrate Gaussian distribu-
tion:

xt+i = µθd
(zt+i) + σθd

(zt+i) · εt+i (6)

whereµθd
,σθd

are feed-forward networks with one or more
hidden layers, εt+i ∼ N (0, I). For standard deviation σθd

,
we add a softplus activation function to the last hidden
output in order to ensure positivity of the standard deviation.
Note that θd is shared across the forecasting horizon, as
latent states encode all time-specific information.

2.2. Inference Network

The inference network maps a range of history to a latent
variable. Instead of commonly-used RNNs, Temporal con-
volutional networks (TCN) has been proven to be more
effective and efficient in many sequential modeling tasks
(Bai et al., 2018). Although TCNs do not have a sense of
temporal order because of their locality, the higher-level rep-
resentations in TCNs have access to longer history. Hence
the convolutional feature maps at different layers implic-
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Figure 2. An architectural view of an LRTCN encoder. The TCN
representations at different layers are consumed by a GRU net-
work. As the upper layers have access to distant history and the
lower layers focus on recent observations, the top-down hierarchy
implicitly keeps the temporal order of the input sequence. We also
feed covariates into the TCN associated with observations.

itly form a temporal hierarchy in a top-down fashion. We
propose to explicitly reconstruct the temporal structure by
stacking a top-down RNN layer over the hierarchy. A sys-
tematical illustration is shown in Figure 2. In our experi-
ments, we choose to use GRU cells (Cho et al., 2014) to
instantiate the RNN. Note that we also use covariates as
an additional input associated with the observations to the
TCN module. These time-based covariates can be regarded
as “positional embeddings” that expose the temporal infor-
mation to order-insensitive TCNs (Gehring et al., 2017). We
use θc to denote all trainable parameters in an LRTCN.

As shown in Figure 2, the approximated posterior of zt+i is
derived from the RNN output at the first layer of LRTCN,
and similar to the emission network, we apply feed-forward
networks with parameter θe to obtain the state

h
(1)
t+i = LRTCN(x1:t+i, e1:t+i;θc)

zt+i = µθe

(
h
(1)
t+i

)
+ σθe

(
h
(1)
t+i

)
· εt+i.

(7)

Note that the inference process resembles a Bayes filter of a
recursive latent process. This implies the implicit temporal
connection among latent states (and the intermediate state)
even if they are conditionally independent in (4).

2.3. Prior Network

Notice that (4) also explicitly attend to past observations
except that it should never have access to the current time
step or unknown future. Therefore, we apply the same archi-
tecture as the inference network to the prior network but first
roughly estimate xt+1:t+τ with corresponding covariates

LRTCN

......

......

Figure 3. The prior network. The estimations x̃t+1:t+τ and the his-
tory x1:t are concatenated and fed into the LRTCN with covariates
as in the inference model.

and zt through another group of feed-forward networks fθg

x̃t+i = fθg
(zt, et+i) i = 1, · · · , τ, (8)

where θg contains trainable parameters. θg is shared across
the forecasting horizon as in the emission network. We then
apply LRTCN to the concatenation [x1:t; x̃t+1:t+τ ] along
with e1:t+τ as in the inference network. We illustrate an
overview of this structure in Figure 3.

Finally, we distinguish priors from posteriors by introducing
different feed-forward networks with parameter θp to shape
the Gaussian priors

h̃
(1)
t+i = LRTCN(x1:t, x̃t+1:t+i, e1:t+i;θc)

zt+i = µθp

(
h̃
(1)
t+i

)
+ σθp

(
h̃
(1)
t+i

)
· εt+i.

(9)

2.4. Training

To learn the model, we are given a time series dataset
{x(n)

1:T }Mn=1 and associated covariates {e(n)1:T }Mn=1, where T
is the length of all available observations and M is the num-
ber of different time series. We create training instances
by selecting windows with fixed history length t and fore-
casting horizon τ but varying the start point of forecasting
from each of the original long time series (Flunkert et al.,
2017). As a result, we get a training dataset with N sliding
windows {x(n)

1:t+τ , e
(n)
1:t+τ}Nn=1.

The Evidence Lower Bound (ELBO) (Hoffman et al., 2013)
of the log-likelihood can be derived as:

log p(x
(n)
t+1:t+τ |x

(n)
1:t ) ≥ −L

(n)
NLL − L

(n)
KL (10)
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ARIMA ETS TRMF DeepAR DeepSSM Ours
Dataset Horizon R0.5 R0.9 R0.5 R0.9 R0.5 R0.5 R0.9 R0.5 R0.9 R0.5 R0.9

Electricity 1 day 0.154 0.102 0.101 0.077 0.084 0.075 0.040 0.083 0.056 0.073 0.038
1 week 0.30 0.110 0.130 0.110 0.087 0.125 0.080 0.085 0.057 0.085 0.053

Traffic 1 day 0.223 0.137 0.236 0.148 0.186 0.161 0.099 0.167 0.113 0.146 0.105
1 week 0.501 0.298 0.532 0.60 0.202 0.219 0.138 0.168 0.114 0.169 0.113

M4 2 days 0.052 0.035 0.054 0.027 0.057 0.090 0.030 0.044 0.027 0.037 0.019

Table 1. Result summary of short-term (1-2 days) and long-term (1 week) forecasting.

where

L(n)
NLL = −

τ∑
i=1

E
q(z

(n)
t+i)

[
log p(x

(n)
t+i|z

(n)
t+i)

]
L(n)

KL = E
q(z

(n)
t )

τ∑
i=1

KL
(
q(z

(n)
t+i|x

(n)
1:t+i)‖p(z

(n)
t+i|z

(n)
t )
)
.

(11)

Hence we define our loss function

L =
1

N

N∑
n=1

(
L(n)

NLL + L(n)
KL

)
(12)

and learn the prior, emission and inference network jointly
by minimizing the loss w.r.t their parameters, namely
θg,θp,θd,θe and θc.

3. Experiments
We conducted experiments on three public benchmark
datasets electricity 1, traffic 2 and M4-hourly 3. Each dataset
is split into a training set, a validation set and a test set in
chronological order as in (Yu et al., 2016). We compare
our method with shallow methods ARIMA, exponential
smoothing (ETS) and TRMF (Yu et al., 2016), as well as re-
cent deep models DeepAR (Flunkert et al., 2017) and Deep
SSM (Rangapuram et al., 2018). For fair comparison, we
use ρ-quantile risk to evaluate the prediction accuracy. The
ρ-quantile risk Rρ with ρ ∈ (0, 1) is defined as:

Rρ(x, x̂) =
2
∑
i,t(ρ− 1x≤x̂)(x

(i)
t − x̂t

(i))∑
i,t |x

(i)
t |

,

where x̂ is the empirical ρ-quantile of the predictive distri-
bution.

Table 1 summarizes the experimental results. Generally, our
model achieves better or competitive results. All models
have similar number of parameters.

1https://archive.ics.uci.edu/ml/datasets/
ElectricityLoadDiagrams20112014

2http://archive.ics.uci.edu/ml/datasets/
PEMS-SF

3https://github.com/M4Competition/
M4-methods/tree/master/Dataset

We also compare the evaluation speed of our model with
DeepAR, a representative recurrent model that makes pre-
dictions step-by-step. After both models are trained, we
predict 100 time series from electricity dataset for a number
of steps on a single Nvidia GTX 1080 Ti GPU. For each
prediction, 200 samples are drawn. We repeat the evaluation
10 times and report the average elapsed time in Figure 4. No-
tice that our model is much faster than DeepAR. Moreover,
the evaluation time of our model almost remains constant
as the forecasting horizon grows. In contrast, the time cost
of DeepAR increases linearly due to sequential generation.

Figure 4. The evaluation time of DeepAR and our model on elec-
tricity dataset. Vertical black lines indicate standard deviations.
The time cost of DeepAR increases linearly while our model is
much more efficient.

4. Conclusions
We present a new deep learning framework for multi-
step ahead time series forecasting task that combines the
strengths of both autoregressive models and state space
models. We avoid step-by-step generation by a fully-
parallelizable latent process. Our model is able to achieve
competitive or even better performance on a variety of
datasets.

 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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http://archive.ics.uci.edu/ml/datasets/PEMS-SF
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