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Abstract
The emergence of deep learning networks raises
a need for explainable AI so that users and do-
main experts can be confident applying them to
high-risk decisions. In this paper, we leverage
data from the latent space induced by deep learn-
ing models to learn stereotypical representations
or ”prototypes” during training to elucidate the
algorithmic decision-making process. We study
how leveraging prototypes effect classification de-
cisions of two dimensional time-series data in two
settings: (1) electrocardiogram (ECG) waveforms
to detect clinical bradycardia, a slowing of heart
rate, in preterm infants, and (2) audio waveforms
to classify spoken digits1. We improve upon exist-
ing models by optimizing for increased prototype
diversity and robustness, visualize how these pro-
totypes in the latent space are used by the model to
distinguish classes, and show that prototypes are
capable of learning features on two dimensional
time-series data to produce explainable insights
during classification tasks.

1. Introduction
Despite the recent surge of machine learning, adoption of
deep learning models in decision critical domains, such as
healthcare, has been slow because of limited transparency
and explanations in black-box algorithms. This observation
points to the critical need for black-box models to offer
interpretable, faithful explanations of their decisions so that
practitioners in high-risk domains can trust model outputs
and leverage their results.

Prototypes are representative examples learned in-process
during model training that describe influential regions in
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latent representations and can provide insight into the fea-
tures utilized by the model for classification. In contrast to
post-hoc explainability, which trains a secondary model to
infer decision reasoning from a primary model by only lever-
aging inputs and outputs, in-process explainable methods
offer faithful explanations of a primary model’s decisions
(Rudin, 2018).

Explainable methods (Ribeiro et al., 2016; Caruana et al.,
2015; Zhou et al., 2015) have largely focused on labeled
image and tabular data sets where classes are clearly separa-
ble and less so on time-series data in general. Time-series
classification on 1-D data with deep neural networks is a
rapidly growing field, with almost 9,000 deep learning mod-
els (Fawaz et al., 2018; Pons et al., 2017; Faust et al., 2018;
Goodfellow et al., 2018), but with limited application to the
medical domain (Faust et al., 2018; Yildirim et al., 2018).
These deep time-series methods, however, are missing in-
process interpretability that explain exactly what the model
believes is important. We extend the in-process example-
based explainability work of (Li et al., 2017) to consider
real-world time-series data and to promote diversity in latent
data representation.

On data with unclear class boundaries, in-process meth-
ods can misbehave. For example when the model in (Li
et al., 2017) is applied to the MNIST dataset, the proto-
types easily separate in the latent space because the latent
data representation is separable and well-structured (see
appendix). However, when class boundaries and features
do not form distinguishable clusters, learned prototypes be-
come archetypes (extreme corner cases) that exist near the
convex hull of the latent space (Fig. 3). This phenomenon
yields prototypes that represent extreme class types and un-
derperform on classifying data in overlapping class regions.

In this work, we provide an explainable method for time-
series data while aiming to remedy the formation of
archetypes. Our model improves upon the autoencoder
framework of Li et al., and introduces a prototype diversity
penalty that explicitly accounts for prototype clustering and
encourages the model to learn more diverse prototypes that
focus on areas of the latent space where class separation
is most difficult and least defined. We show the utility of
this approach on two dimensional time-series classification
in two cases: bradycardia, a slowing of heart rate, events
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from electrocardiogram (ECG) waveforms of preterm in-
fants and spoken digit recognition from audio waveforms.
The two-dimensional representation of time-series provides
an interpretable method for experts (e.g. clinicians) to un-
derstand the evolution of relevant features based on visible
phenotypes present in time-series data. To the best of our
knowledge this is the first application of prototypes and
latent space analysis for health time-series data that could
help reveal clinically relevant and explainable phenotypes.

2. Methods

Figure 1. Prototype Architecture from (Li et al., 2017)

2.1. Time-Series Explanation via Prototypes

We adopt the autoencoder-prototype architecture from (Li
et al., 2017). Let X = (xi, yi)

n
i be the training set with

xi ∈ Rp and class labels yi ∈ {1, ...,K} for each training
point i ∈ {1, ..., n}. The front-end autoencoder network
learns a lower-dimension latent representation of the data
with an encoder network, f : Rp → Rq. The latent space
is then projected back to the original dimension using a
decoder function, g : Rq → Rp. The latent representation,
f(x) is also passed to a feed-forward prototype network,
h : Rq → RK , for classification. The prototype network
learns m prototype vectors, p1, p2, ..., pm ∈ Rq using a
four-layer fully-connected network over the latent space that
learns a probability distribution over the class labels yi (Fig
1). The learned prototypes can then be decoded using g and
examined to infer what the network has learned. The choice
of m is determined a priori, with larger values allowing for
higher throughput and model capacity, but potentially less
interpretable prototypes.

We revise the loss function by adding a penalty for learned
prototypes that are too close to one another:

PDL(p1,..., pm) =

1

log
(

1
m

∑m
j=1mini>j∈[1,m] ‖pi − pj‖

2
2

) (1)

We calculate the average minimum squared l2 norm between
any two prototypes, pi, pj . By applying the inverse log to the
prototype distances, we penalize prototypes that are close in

distance while making sure the minimum distance between
prototypes does not get too large. This prototype diversity
loss (PDL) promotes prototype diversity and coverage over
the latent space. The updated loss function is:

L((f, g, h), X) =E(h ◦ f,X) + λRR(g ◦ f,X)

+ λ1R1(p1, ..., pm, X)

+ λ2R2(p1, ..., pm, X)

+ λpd PDL(p1, ..., pm)

(2)

R1(p1, ..., pm, X) =
1

m

m∑
j=1

mini∈[1,n] ‖pj − f(xi)‖22 ,

(3)

R2(p1, ..., pm, X) =
1

n

n∑
i=1

minj∈[1,m] ‖f(xi)− pj‖22 .

(4)

where E is the classification (cross entropy) loss, R is the
reconstruction loss of the autoencoder, and R1 and R2 are
the loss terms that relate the feature vectors to the prototype
vectors in latent space (Li et al., 2017).

2.2. Datasets

The neonatal intensive care unit (NICU) dataset is composed
of two sources: (1) ECG waveforms from PhysioNet’s PICS
database (Gee et al., 2017; Goldberger et al., 2000); and
(2) ECG waveforms (500 Hz, Intellivue MP450) collected
from a preterm infant at Seton Medical Center Austin. Class
breakdowns for bradycardia in the ECG signal follow clini-
cal thresholds (Perlman & Volpe, 1985): XECG = { normal
(>100 beats per minute (bpm)): 1039, mild (100-80 bpm):
634, moderate (80-60 bpm): 306, severe (<60 bpm): 132
}. Moderate and severe events were combined into a single
class. For full details on pre-processing of the data, please
refer to (Gee et al., 2019).

The Free Spoken Digit Dataset (Jackson et al., 2018) con-
sists of 2000 audio clips (8 kHz) of four speakers repeating
the digits 0 through 9, 50 times each. Each segment was nor-
malized to zero-mean, unit-variance and clipped for white

Figure 2. Examples of (1) ECG segments in classification of brady-
cardia (top), and (2) a speaker (Jackson) saying 0, 6 & 7 (bottom)
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space (Fig. 2). This data can be thought of as ”spoken
MNIST”. We perform speaker classification and digit clas-
sification within a speaker.

2.3. Prototype Diversity Score

We adopt a version of the group fairness metric presented
in (Mehrotra et al., 2018) and refer to it as the prototype
diversity score, Ψ:

Ψ =
1

Z

t∑
i=1

√
|φi| (5)

where φi, i ∈ {1, ..., t} is defined for a metric and Z is the
normalization constant. For the neighbor diversity metric
ΨN , φi is the set of prototypes that have nearest neighbor i
and Z is the number of prototypes m. For the class diversity
metric ΨC , φi is the set of prototypes that are from class i
and Z is the number of classes K. Note, max(ΨD) = 1.

3. Results
3.1. Classification of ECG with 2-D Prototypes

We observe more diverse prototypes and comparable or
better test accuracy with our model 93.1% compared with
92.1% from the baseline model in (Li et al., 2017) (Table
1). Both models perform well on the classification of the
normal class, as expected since normal waveforms have
near-constant phase. Both models have difficulty separat-
ing between the mild and moderate/severe classes, often
confusing the classification between the two (see appendix).
This behavior is expected since data near these two class
boundaries are difficult to discern, even for domain experts,
due to events existing in both classes with possible subtle
time differences in cardiac firing. Nonetheless, we find that

Figure 3. Effect of loss regularization on the latent space and
spread of prototypes for the NICU classification task using 10
prototypes with λpd = 0 (baseline) and λpd = 103.

ECG: Bradycardia
λpd Accu. ΨN ΨC

0 92.1 ± 0.1% 0.83 ± 0.04 0.78 ± 0.19

500 92.7 ± 1.0 % 0.86 ± 0.07 0.89 ± 0.19
1e3 92.4 ± 1.3% 0.87 ± 0.11 0.89 ± 0.19
2e3 93.1 ± 0.4% 0.90 ± 0.04 1.00 ± 0.00

Table 1. Diversity score for neighbors ΨN and class ΨC . Our
model, λpd > 0, returns better accuracies and diversity scores
(bolded) than the baseline model (row λpd = 0). (Model details:
3-class, 10-prototypes, learning rate = 0.002).

the addition of a prototype diversity loss performs at least,
if not better, than the baseline model.

Figure 4. Prototype evolution with in-process explainability over
training time. High level features are easily learned in early epochs
of training, while more complex features are developed over time.
The final nearest neighbors are depicted on the right. The proto-
types correspond to a subset of the λpd = 103 latent space cloud
in Figure 3. Model details: NICU data, 3-class, 10-prototypes.

Because prototypes are generated during training, we infer
features that the algorithm utilized to classify waveforms
at different points during training (Fig 4). For example, at
epoch 100, we see that some of the prototypes exhibit global
morphological features of the normal waveform class after
random initialization at epoch 0.

As training progresses, we observe other complex pheno-
types emerging: one prototype learns that large gaps in
cardiac firings are important for identifying severe cases
and another prototype learns the consistent pattern of spikes
are important for mild cases. Since the mild class shares
mixed features of both normal and positive events, it is not
surprising that more prototypes are needed in this class to
learn subtleties of the class features (see appendix). Thus,
prototypes highlight waveform structures that the algorithm
deemed as important when trying to learn the classification
of bradycardia. This finding aligns with the idea of clin-
icians using visible features present in a bradycardia (i.e.
the increasing distance between QRS complexes) to decide
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Figure 5. Accuracy and diversity metrics for the NICU and spoken
digits experiments. The latter is divided into ”person” detection
and digit detection within each person in the dataset.

whether or not a bradycardia exists in an image.

We compare the latent space of (Li et al., 2017) to the
latent space of our model with prototype diversity loss via
t-SNE projections, where proximity in 2-D space suggests
that the points are ”close” in distance in the original latent
space. We represent the learned prototypes by mapping
each prototype to it’s nearest neighbor (Fig 3). We find that
by increasing our loss term, PDL, our model increases the
local coverage of the prototypes compared with the baseline
model (i.e. λpd = 0). However, if we regularize our loss
term too much (i.e. λpd > 104), we begin to introduce
clustering of prototypes and diversity suffers. Thus with
the additional prototype distance penalty, we are able to
achieve higher diversity scores and classification accuracies
for various hyperparameter settings (Fig 5).

3.2. Case Study with Prototypes: Exploring ECG
Morphology and Bradycardia Classification.

We observe that ECG events in a local neighborhood share
similar QRS complex morphology, despite having different
class labels and cardiac firing periods (Fig. 6). We also ob-
serve that the algorithm distinctly separates features within
the moderate/severe class that were important in classifi-
cation (i.e. prototypes 2 and 10 shown in Fig 6). These
results suggest that there are physiologic dependencies (i.e.
clustering based on cardiac morphology and function) can
be learned using our model to investigate physiological phe-
nomena, and possibly applied to other clinical areas, like
cardiac ischemia or apnea of prematurity in respiration -
both exhibit visible, abnormal waveform behavior.

3.3. Spoken Digits Classification and Analysis

We assess our model on high-frequency audio waveforms
of spoken digits (FSDD) as 2-D images for 4 class speaker
and 10 digit classification tasks with 4 and 10 prototypes,
respectively. The waveform envelope and syllables of these
spoken digits are discernible to the eye (see ”six” and ”se-
ven” in Fig 2) and, as such, make good candidates for our
image-based explainability model. Experiments show that

Figure 6. Learned prototypes showcase the diversity of features
that are important for understanding ECG morphology while clas-
sifying bradycardia events. ( 10-prototypes, λpd = 104 ).

Figure 7. Learned prototypes from audio waveforms of spoken
digits by Nicolas from the FSDD ( λpd = 500).

by varying regularization of the prototype diversity penalty,
we observe slightly better or similar accuracies when com-
pared to the baseline model (Fig. 5). With a fine-tuned
λpd we can increase diversity of the prototypes and corre-
spondingly see improved accuracy and data coverage (see
appendix). For example, λpd = 500 gives a higher diver-
sity score across all tasks, indicating prototypes with more
unique nearest neighbors as compared with the baseline
model (Fig 5).

Experiments show that increasing the depth of the network
and fine-tuning the learning rate lead to both increased ac-
curacy and diversity over all tasks. Similarly, recent data
augmentation techniques in medical (Bahadori & Lipton,
2019) and speech recognition (Park et al., 2019) domains
could help further improve performance. The purpose of
this work, however, is not to obtain the best performance
on theses tasks, but rather to show the utility of learned
prototypes as faithful explainations of what a model is using
to make decisions. We demonstrate some of the learned
prototypes in Fig. 7, which shows representations the model
finds useful in classifying digits for a given speaker.
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