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Abstract

To capture the dynamic covariance of non-
stationary multivariate time series, we propose
a latent factor Gaussian process model using the
Log-Euclidean metric for symmetric positive def-
inite matrices. From multivariate time series, the
empirical covariance process is estimated with
the sliding window method and mapped to Eu-
clidean space by matrix logarithm. Gaussian pro-
cess latent factors are then fitted to determine a
parsimonious representation of the non-stationary
dynamics and quantify the uncertainty. The pro-
posed model naturally incorporates the positive
definite constraints of covariance matrices, has
desirable Bayesian properties, and shows compet-
itive performance on simulated data.

1. Introduction & Related Work
Studying dynamic covariance of multivariate time series is
of great interest in neuroscience and economics but very
challenging from a modeling perspective, especially when
the time series is non-stationary. For a p-variate time se-
ries, the covariance at each time t will have (p + 1)p/2
terms to estimate. Without further constraints on the co-
variance process, the number of terms to estimate is likely
to be practically prohibitive. In most dynamic covariance
models, there is a common framework with three key ingre-
dients: estimation of covariance from observed time series,
identification of non-stationary covariance dynamics, and
dimensionality reduction.

In the neuroimaging community, many studies first apply a
dimensionality reduction technique such as principal com-
ponent analysis (PCA) on the time series and use a hidden
Markov model (HMM) or k-means clustering to find a num-
ber of distinct covariance states (Cabral et al., 2017)(Stevner
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et al., 2019). While many variants offer different improve-
ments, they are nevertheless non-probabilistic and can be
problematic for uncertainty quantification. This is a seri-
ous drawback when analyzing data that typically have low
signal-to-noise ratio such as fMRI measurements.

There are time series extensions of Bayesian factor mod-
els of this form X(t) = f(t)Λ(t) + ε(t) such as la-
tent factor stochastic volatility (LFSV) (Kastner et al.,
2017)(Chib et al., 2006). The LFSV model expresses the
error terms as ε(t) = Ut(h

U
t )1/2ε(t), where Ut(hUt ) =

diag{exp(hU1t, . . . , exp(hUpt)}, and the factors as f(t) =

Vt(h
V
t )1/2ζ(t), where ht = (hUt , h

V
t ) are the latent volatil-

ities. The log-volatilities are assumed to follow an autore-
gressive process of order one, hUjt = µj + φj(hj,t−1 −
µj) + σjηj(t). The innovations ε(t), ζ(t) and η(t) are all
assumed to follow standard multivariate Gaussian distribu-
tions. Conditional on the volatilities, the covariance of the
time series is Cov(X(t)|ht) = ΛVt(h

V
t )Λ′+Ut(h

U
t ) where

factor loadings Λ(t) are fixed at Λ.

An alternative latent factor model proposed in (Fox & Dun-
son, 2015) instead allows both factors f(t) and factor load-
ings Λ(t) to vary over time. The factors f(t) are modeled
with independent Gaussian processes (GP) similar to (Yu
et al., 2009). In this setting, the dynamics of the factor load-
ings must be modeled as a matrix process, with some struc-
ture imposed to ensure the model is tractable. The resulting
conditional covariance is Cov(X(t)|ft) = Λ(t)Λ(t)′ + Σε.
While this model is considerably more flexible than the
LFSV model, the factor matrix process adds substantial
complexity.

Aiming to bridge the gap between aforementioned models,
we propose the latent factor Gaussian process (LFGP) model
with Log-Euclidean metric. Rather than on the observed
time series, we place the factor structure on the covariance
process, as consistently estimated by tapered sliding win-
dow. This has the advantage of decoupling the mean and
covariance models. As covariance matrices lie on the man-
ifold of symmetric positive-definite (SPD) matrices, the
Log-Euclidean metric allows unconstrained modeling of the
upper triangle of the covariance elements. The LFGP model
is fully probabilistic and can be used for practical inference
on characteristics of the covariance process.
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Sliding-window (SW) methods have been extensively re-
searched for the estimation of dynamic functional connec-
tivity and shown to be consistent; see (Preti et al., 2017) for
a recent detailed review of existing literature. Studies of the
performance of sliding window estimates recommend the
use of a tapered kernel to decrease the impact of outlying
measurements and to improve the spectral properties of the
estimate (Leonardi & Van De Ville, 2015).

The intrinsic space of p× p SPD matrices is a Riemannian
manifold, which, after transformation by matrix logarithm,
is isomorpic to Rq with the usual Euclidean norm, where
q = (p + 1)p/2. Methods for modeling covariances in re-
gression contexts via matrix logarithm were first introduced
in (Chiu et al., 1996). Further applications of the Log-
Euclidean framework in neuroimaging have been developed
in recent years (Zhu et al., 2009), but our application of the
Log-Euclidean framework is novel for modeling dynamic
covariance.

2. Latent Factor Gaussian Process Model
2.1. Formulation

We consider estimation of dynamic covariance from a sam-
ple of n independent time series with p variables and T time
points. Denote the ith observed p-variate time series by
Xi(t), i = 1, · · · , n. We assume that each Xi(t) follows an
independent distribution D with zero mean and stochastic
covariance process Ki(t). To model the covariance process,
we first compute the Gaussian tapered sliding window co-
variance estimates for each Xi(t), with fixed window size
L and taper τ to obtain K̂τ,i. We then apply the matrix
logarithm to obtain the q = p(p+ 1)/2 length vector Yi(t)
specified by K̂τ,i = Log(~u(Yi)), where ~u maps a matrix
to its vectorized upper triangle. We refer to Yi(t) as the
“log-covariance” at time t.

The resulting Yi(t) can be modeled as an unconstrained
q-variate time series. The LFGP model represents Yi(t) as a
linear combination of r latent factors Fi(t) through an r× q
loading matrix B and independent Gaussian errors εi. The
loading matrix B is held constant across observations and
time. Here Fi(t) is modeled as a product of independent
Gaussian processes. Placing priors on the loading matrix B,
Gaussian noise variance σ2, and Gaussian process hyper-
parameter θ, gives a fully probabilistic latent factor model
on the covariance process:

Xi(t) ∼ D(0,Ki(t)) where Ki(t) = exp (~u(Yi(t))) (1)

Yi(t) = Fi(t) ·B + εi where εi
iid∼ N (0, Iσ2) (2)

Fi(t) ∼ GP(0, κ(t; θ)) (3)

B ∼ p1, σ2 ∼ p2, θ ∼ p3. (4)

The LFGP model employs a latent distribution of curves

GP(0, κ(t; θ)) to capture temporal dependence between ob-
servations, thus inducing a GP on log-covariance Y (t). This
conveniently allows multiple observations to be modeled
as different realizations of the same induced GP as done in
(Lan et al., 2017). The model posteriors are conditioned on
different observations despite sharing the same kernel. For
better identifiability, the GP variance scale is fixed so that
the loading matrix can be unconstrained. The model can
learn a wide range of temporal dynamics in the latent space
due to the flexibility of GP and we will demonstrate this
advantage on simulated data in Section 4.2.

2.2. Properties

Stationarity of LFGP log-covariance process The covari-
ance of the log-covariance process Y (t) depends only on
the static loading matrix B and the factor covariance ker-
nels. Consequently, when stationary kernels are chosen for
the factor priors, the log-covariance process estimated by
the LFGP model is stationary. Explicitly, for factor kernels
κ(s, t; θk), k = 1, . . . , r, and assuming εi(t)

iid∼ N (0,Σ),
with Σ = (σ2

jj′)j,j′≤q constant across observations and
time, the covariance of elements of Y (t) is

Cov(Yij(s), Yij′(t)) = Cov(

r∑
k=1

Fik(s)βkj + εij(t), (5)

r∑
k=1

Fik(t)βkj′ + εij′(t)) (6)

=

r∑
k=1

βkjβkj′κ(s, t; θk) + σ2
jj′ (7)

which is weakly stationary when κ is weakly stationary.

Large support The prior distribution of the log-covariance
process Y (t) is a linear combination of r independent GPs
each with mean 0 and kernel κ(s, t; θj), j = 1, · · · , r. That
is, each log-covariance element will have prior Yj(t) =∑r
k=1 βjkFk(t) ∼ GP(0,

∑
β2
jkκ(s, t; θk)). This provides

an extremely flexible representation of covariance elements.
Even in the relatively simple case of κ(t; θk) chosen as a
squared exponential kernel, the linear combination of GPs al-
lows the model to capture dynamics at multiple frequencies.
Because the LFGP model can be interpreted as a regression
on the sliding window estimates (which are consistent for
K(t)), and under the assumption of weak stationarity for
the covariance process K(t), the large support of the LFGP
model inherits from large support of the latent factor model
for multivariate stationary time series.

Posterior contraction To consider posterior contraction
of the proposed model, we can extend results given in
(van der Vaart et al., 2008) on the posterior contraction
rate of univariate GP regression. For this, we assume that
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Y (t) : [0, 1] → Symp is a smooth function in `∞([0, 1])
with respect to the Euclidean norm, which implies that
K(t) : [0, 1] → Pp is a smooth `∞([0, 1]) function with
respect to the Log-Euclidean norm.

Assume the true log-covariance process w = ~u(log(K(t))
is in the support of the product GP W ∼ F (t)B, for F (t)
and B defined above. Further, assume that the prior p2 for
σ2 has support on a given interval [a, b] ⊂ (0,∞). Then,
since W ∈ `q∞([0, 1]), an extension of Theorem 3.3 in
(van der Vaart et al., 2008) gives E0Πn((w, σ) : ‖w −
w0‖n + |σ − σ0| > Mεn|Y1, · · · , Yn)→ 0 for sufficiently
large M and εn → 0 satisfying a specific lower bound
condition. We will verify posterior contraction empirically
in Section 4.1.

3. Scalable Computation
The LFGP model can be fitted with Gibbs sampling as com-
monly done for Bayesian latent variable models. In every
iteration, we first sample latent GP factors F |B, σ2, θ, Y
from the conditional p(F |Y ) as F, Y are jointly multivariate
Gaussian, where the covariance can be written in terms of
B, σ2, θ. However, it is worth noting that the joint distribu-
tion has a large covariance matrix, which could be computa-
tionally expensive to invert naı̈vely. Given latent factors F ,
the parameters B, σ2 and θ become conditionally indepen-
dent. Using conjugate priors for Bayesian linear regression,
the posterior p(B, σ2|F, Y ) is directly available. For the
posterior of GP length scales, p(θ|F ), either Metropolis
random walk or slice sampling (Neal et al., 2003) can be
used within each Gibbs step because the parameter space is
low dimensional.

Figure 1. Toeplitz covariance matrix with squared exponential ker-
nel, Kronecker covariance matrix of multiple observations, Kro-
necker covariance matrix of induced process by one factor, final
covariance matrix with diagonal variance.

To make computation of the GP posteriors tractable, it is
important to exploit the structure of the covariance matrix.

For each independent latent GP factor Fj , there are n sets
of observations at T time points. Therefore, the GP co-
variance matrix ΣFj has dimensions nt × nt. We notice
that the covariance ΣFj

can be decomposed with Kronecker
product ΣFj

= I ⊗KT (t). KT is the kernel over time t;
it is a t× t matrix so the inversion cost is O(t3) instead of
O((nt)3). With either the squared-exponential or Matern
kernel, KT (t) has a Toeplitz structure and can be approxi-
mated with inducing points or interpolation, further reducing
the computational cost (Wilson & Nickisch, 2015).

With all the latent GP factors F (dimensions n× t× r) and
loading matrix B (dimensions r × q), we have an induced
GP on Y . The dimensionality of Y is n× t× q so the full
(ntq)× (ntq) covariance matrix is prohibitive to invert. As
every column of Y is a weighted sum of the GP factors, the
covariance matrix ΣY can be written as a sum of Kronecker
products

r∑
j=1

Aj ⊗ ΣFj
+ Iσ2 (8)

where ΣFj is the covariance matrix of the jth latent GP
factor and Aj is a q × q matrix based on the factor loadings.
Iteratively fitting latent factors only involves Aj ⊗ΣFj

+ I ,
which can be inverted in a computationally efficient way
(Stegle et al., 2011).

4. Experiments
4.1. Empirical Posterior Contraction

To verify posterior contraction in the LFGP model, we simu-
late data with various sample sizes and numbers of observa-
tion time points. The covariance dimensions are 5× 5 with
two latent factors. On each simulated data set, we then fit
a LFGP model and obtain posterior draws. For model bias,
we consider the mean squared error of posterior median of
the reconstructed log-covariance series. For posterior uncer-
tainty, the posterior sample variance is used. As shown in
Table 1, both sample size n and number of observation time
points t contribute to posterior contraction; there is less bias
and uncertainty as n and t increase.

Table 1. Simulation results with various sample sizes and numbers
of time points

t = 25 t = 50 t = 100

n = 1 12.21 (20.22) 6.911 (7.588) 3.728 (5.218)
n = 10 7.845 (8.743) 4.123 (5.836) 1.682 (2.582)
n = 20 7.089 (7.714) 3.273 (3.989) 1.672 (2.659)
n = 50 5.869 (7.358) 3.237 (3.709) 1.672 (1.907)

MSE of posterior median (sample variance) ×10−2
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Figure 2. Diffused and biased posterior predictions of LFGP model
(n = 1, t = 25) with truth shown in dashed lines (left); con-
centrated and unbiased posterior predictions (n = 50, t = 100)
(right).

4.2. Model Comparisons on Simulated Data

Here we consider three benchmark models: sliding win-
dow with principal component analysis (SW-PCA), hidden
markov model (HMM), and latent factor stochastic volatility
model (LFSV). SW-PCA and HMM are commonly used in
dynamic functional brain connectivity studies but have limi-
tations. For instance, the estimated covariance matrices are
sensitive to the choice of sliding window size and PCA does
not take the estimation error into account. While HMM is a
probabilistic model and can be used in conjunction with a
time series model, it is not able to capture smoothly varying
covariance dynamics. In contrast to the proposed model,
none of these benchmark models can handle multiple obser-
vations.

To compare the performance of different models, we sim-
ulate time series data Xt ∼ N(0,K(t)) with time varying
covariance K(t). The covarianceK(t) has a low-rank struc-
ture and follows deterministic dynamics, that are given by
~u(log(K(t))) = T (t) ·A. We consider three different sce-
narios of latent dynamics T (t): square waves, piece-wise
linear functions, and smooth splines. For each scenario, we
randomly generate 100 time series data sets and fit all the
models. Each time series has 10 variables with 1000 ob-
servations and the latent dynamics are 4-dimensional. The
evaluation metric is reconstruction loss of the covariance as
measured by the Log-Euclidean metric. Table 2 displays the
simulation results and we can see that the proposed LFGP
model outperforms benchmark models.

Table 2. Model comparison results on simulated data

Square Linear Spline

SW-PCA 0.693 (0.499) 0.034 (0.093) 0.037 (0.016)
HMM 1.003 (1.299) 0.130 (0.124) 0.137 (0.113)
LFSV 4.458 (2.416) 0.660 (0.890) 0.532 (0.400)
LFGP 0.380 (0.420) 0.027 (0.088) 0.028 (0.123)

Median log-covariance MSE (standard deviation)

Figure 3. With the jagged dynamics of discrete states, the LFGP
model fails to capture the “jumps” but approximates the overall
trend (top). When the underlying dynamics are smooth, the LFGP
model can accurately recover the shape up to some scaling constant
(bottom).

5. Discussion & Future Work
We have presented a novel model for dynamic covariance
of non-stationary multivariate time series. Based on slid-
ing window estimates for covariances, the model utilizes
latent Gaussian process factors on the SPD matrix mani-
fold with Log-Euclidean metric. Determining the number
of latent factors in the model is crucial in practice. As
seen in Bayesian factor analysis literature, sparsity inducing
priors could be used to achieve automatic factor selection.
A more important practical consideration is model inter-
pretability. To this end, the factor loadings can be used to
identify clusters and potentially reveal common structures
in the covariance process.

Currently, the model limitations are: (1) the covariance esti-
mation and model fitting are done separately; (2) the model
input is (p + 1)p/2-dimensional and computation is chal-
lenging when p is large. A possible solution to address both
limitations is joint covariance estimation and dimensionality
before the log-Euclidean transformation. Given the strong
preliminary model performance on simulated data, we think
the possibility is well worth exploring.
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