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Abstract
We consider the problem of online forecasting
of sequences of length n with total-variation at
most Cn using observations contaminated by in-
dependent σ-subgaussian noise. We design an
O(n log n)-time algorithm that achieves a cu-
mulative square error of Õ(n1/3C

2/3
n σ4/3) with

high probability. The result is rate-optimal as it
matches the known minimax rate for the offline
nonparametric estimation of the same class (Mam-
men & van de Geer, 1997). We show that on-
line gradient descent and its variants with a fixed
restarting schedule — are instances of a class of
linear forecasters that require a suboptimal re-
gret of Ω̃(

√
n). This implies that the use of more

complex algorithms are necessary to obtain the
optimal rate. To the best of our knowledge, this is
the first work of its kind that considers local adap-
tivity in an online forecasting problem, and the
first non-trivial class of online learning problems
with a minimax dynamic regret of O(n1/3).

1. Introduction
Nonparametric regression is a fundamental class of prob-
lems that has been studied for more than half a century in
statistics and machine learning (Nadaraya, 1964; De Boor
et al., 1978; Wahba, 1990; Donoho et al., 1998; Mallat,
1999; Scholkopf & Smola, 2001; Rasmussen & Williams,
2006). It solves the following problem:

• Let yi = f(xi) + Noise for i = 1, ..., n. How
can we estimate a function f using data points
(x1, y1), ..., (xn, yn) in conjunction with the knowl-
edge that f belongs to a function class F?

A recent and successful class of nonparametric regression
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technique called trend filtering (Steidl et al., 2006; Kim
et al., 2009; Tibshirani, 2014; Wang et al., 2014) was shown
to have the property of local adaptivity (Mammen & van de
Geer, 1997) in both theory and practice. We say a non-
parametric regression technique is locally adaptive if it can
cater to local differences in smoothness, hence allowing
more accurate estimation of functions with varying smooth-
ness and abrupt changes. For example, for functions with
bounded total variation (when F is a total variation class),
standard nonparametric regression techniques such as kernel
smoothing and smoothing splines have a mean square error
(MSE) of O(n−1/2) while trend filtering has the optimal
O(n−2/3).

Trend filtering is, however, a batch learning algorithm where
one observes the entire dataset ahead of the time and makes
inference about the past. This makes it inapplicable to the
many time series problems that motivate the study of trend
filtering in the first place (Kim et al., 2009). The focus of
this work is in developing theory and algorithms for locally
adaptive online forecasting which predicts the immediate
future value of a function with heterogeneous smoothness
using only noisy observations from the past.

1.1. Problem Setup

We propose a model for nonparametric online forecasting
as described in Figure 1. This model can be re-framed in
the language of the online convex optimization model with
three differences.

1. We consider only quadratic loss functions of the form
ft(x) = (x− θt)2.

2. The learner receives independent noisy gradient feed-
back, rather than the exact gradient.

3. The criterion of interest is redefined as the dynamic
regret (Zinkevich, 2003; Besbes et al., 2015):

Rdynamic(θ̂, f1:n) := E

[
n∑
t=1

ft(xt)

]
−

n∑
t=1

inf
xt∈Θ

ft(xt).

(1)

1.2. Assumptions

We consolidate all the assumptions used in this work and
provide necessary justifications for them.
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1. Fix action time intervals 1, 2, ..., n

2. The player declare a forecasting strategy f̂i :
Ri−1 → R for i = 1, ..., n.

3. An adversary θi for i = 1, ..., n.

4. For every time point i = 1, ..., n:

(a) We play ai = f̂i(y1, ..., yi−1).
(b) We receive a feedback yi = θi + Zi,

where Zi is a zero-mean, independent
subgaussian noise.

5. At the end, the player suffers a cumulative
regret of

∑n
i=1 (ai − θi)2.

Figure 1. Nonparametric online forecasting model. The focus
of the proposed work is to design a forecasting strategy that
minimizes the expected cumulative regret. Note that the prob-
lem depends a lot on the choice of the sequence θi. Our inter-
est is on sequences with bounded total variation (TV) so that∑n

i=2|θi − θi−1|≤ Cn.

• (A1) The time horizon for the online learner is known to
be n.

• (A2) The parameter σ2 of subgaussian noise in the obser-
vations is known.

• (A3) The sequence θ = [θ1, ..., θn] has its total variation
bounded by some known positive Cn, i.e., we take
F to be the total variation class TV(Cn) := {θ ∈
Rn|‖Dθ‖1≤ Cn} where D is the discrete difference
operator.

• (A4) |θ1|≤ U .

The knowledge of σ2 in assumption (A2) is primarily used
to get the optimal dependence of σ in minimax rate. This
assumption can be relaxed in practice by using the Median
Absolute Deviation estimator as described in Section 7.5
of Johnstone (2017) to estimate σ2 robustly. Assumption
(A3) features a large class of functions with spatially in-
homogeneous degree of smoothness. The functions residing
in this class need not even be continuous. Our goal is to
propose a policy that is locally adaptive whose empirical
mean squared error converges at the minimax rate for this
function class. The knowledge of Cn is used to get its
optimal dependence on the regret. Assumption (A4) is
very mild as it puts restriction only to the first value of the
sequence. This assumption controls the inevitable prediction
error for the first point in the sequence.

1.3. Our Results

Contributions The major contributions of this work are
summarized below.

• It is known that the minimax MSE for smoothing se-
quences in the TV class is Ω̃(n−2/3). This implies
a lowerbound of Ω̃(n1/3) for the dynamic regret in
our setting. We present a policy ARROWS (Adaptive
Restarting Rule for Online averaging using Wavelet
Shrinkage) with a nearly minimax dynamic regret
Õ(n1/3).

• We show that a class of forecasting strategies — in-
cluding the popular Online Gradient Descent (OGD)
with fixed restarts and moving averages — are funda-
mentally limited by Ω̃(

√
n) regret.

• We also provide a more refined lower bound that char-
acterized the dependence of U,Cn and σ, which cer-
tifies the optimality of ARROWS in all regimes. The
bound also reveals a subtle price to pay when we move
from the smoothing problem to the forecasting prob-
lem, which indicates the separation of the two problems
when Cn/σ � n1/4, a regime where the forecasting
problem is strictly harder (See Figure 3).

• Naive implementation of our policy will have a run-
time complexity of O(n2). We exploit the sequential
structure of our policy and sparsity in wavelet trans-
forms to construct an O(n log(n)) implementation.

1.4. A brief comparison to existing online
non-parametric methods

We note that our problem falls into the more general
framework of online non-parametric regression setting
studied in (Rakhlin & Sridharan, 2015). It can be
shown that our dynamic regret minimization setting
is reducible to theirs. Since the bounded TV class is
sandwiched between Besov spaces B1

1,q for the range
1 ≤ q ≤ ∞, the discussion in section 5.8 of (Rakhlin
& Sridharan, 2015) establishes that minimax growth
w.r.t n as O(n1/3) in the online setting for TV class.
Thus our bound, modulo logarithmic factor, matches
with theirs though we give the precise dependence on
Cn and σ as well. It is worthwhile to point out that
while the bound in (Rakhlin & Sridharan, 2015) is
non-constructive, we achieve the same bound via an
efficient algorithm.

2. Main results
We are now ready to present our main results.

2.1. Limitations of Linear Forecasters

Let’s consider the class of linear forecasters — estimators
that outputs a fixed linear transformation of the observations
y1:n. The following preliminary result shows that Restart-
ing OGD (Besbes et al., 2015; Chen et al., 2018) is a linear



Online Forecasting of Total-Variation-bounded Sequences

forecaster . By the results of Donoho et al. (1998), lin-
ear smoothers are fundamentally limited in their ability to
estimate functions with heterogeneous smoothness. Since
forecasting is harder than smoothing, this limitation gets
directly translated to the setting of linear forecasters.

Proposition 1. Online gradient descent with a fixed restart
schedule is a linear forecaster. Therefore, it has a dynamic
regret of at least Ω̃(

√
n).

The proposition implies that we will need fundamentally
new nonlinear algorithmic components to achieve the opti-
mal O(n1/3) regret, if it is achievable at all!

2.2. Policy

In this section, we present our policy ARROWS (Adaptive
Restarting Rule for Online averaging using Wavelet Shrink-
age). The following notations are introduced for describing
the algorithm.

• th denotes start time of the current bin and t be the current
time point

• ȳth:t denotes the average of the y values for time steps
indexed from th to t.

• pad0(yth , ..., yt) denotes the vector (yth − ȳth:t, ..., yt −
ȳth:t)

T zero-padded at the end till its length is a power
of 2. i.e, a re-centered and padded version of observa-
tions.

• T (x) where x is a sequence of values, denotes the
element-wise soft thresholding of the sequence with
threshold σ

√
β log(k) where k is the length of x.

• H denotes the orthogonal discrete Haar wavelet transform
matrix of proper dimensions

2.3. Dynamic Regret of ARROWS

In this section, we bound the run-time and non-stationary
regret of the policy.

Theorem 1. Let the feedback be yt = θt + Zt where Zt
is an independent, σ-subgaussian random variable. Let
θ1:n ∈ TV(Cn). If β = 6 + 2 log(8/δ)

log(n) , then with proba-
bility at least 1 − δ, ARROWS achieves a dynamic regret
of Õ(n1/3C

2/3
n σ4/3 + U2 + C2

n + σ2) where Õ hides a
logarithmic factor in n and 1/δ

Remark 1. By a rewriting of the regret bound, it can be
shown that our policy is also optimal for predicting se-
quences from Sobolev space defined by sequences that sat-
isfy ‖Dθ(1 : n)‖2≤ C ′n = n−1/2Cn. In other words, our
policy is adaptively minimax, adaptive to the underlying
function class being Sobolev or TV class.

ARROWS: inputs - observed y values, time horizon n, δ ∈
(0, 1], total variation bound Cn, a hyper-parameter β > 6

1. Initialize th = 1, newBin = 1, y0 = 0

2. For t = 1 to n:

(a) if newBin == 1, predict xtht = yt−1, else predict
xtht = ȳth:t−1

(b) set newBin = 0, observe yt and suffer loss (xtht −
θt)

2

(c) Let ŷ = pad0(yth , ..., yt) and k be the padded
length.

(d) Let α̂(th : t) = T (Hŷ)

(e) Restart Rule: If 1√
k

∑log2(k)−1
l=0 2l/2‖α̂(th :

t)[l]‖1> n−1/3C
1/3
n σ2/3 then

i. set newBin = 1

ii. set th = t+ 1

2.4. A lower bound on the minimax regret

We now prove a matching lower bound of the expected
regret.

Proposition 2. Assume min{U,Cn} > 2πσ and n > 3,
there is a universal constant c such that

inf
x1:n

sup
θ1:n∈TV(Cn)

E

[
n∑
t=1

(xt(y1:t−1)− θt)2

]
≥

c(U2 + C2
n + σ2 log n+ n1/3C2/3

n σ4/3).

(2)

Remark 2 (The price of forecasting). The lower bound
implies that a term with C2

n is required even if σ = 0,
whereas in the case of a one-step look-ahead oracle (or
the smoothing algorithm that sees all n observations) does
not have this term. This implies that the total amount of
variation that the algorithm can handle while producing a
sublinear regret has dropped from Cn = o(n) to Cn =

o(
√
n). Moreover, the regime where the n1/3C

2/3
n σ4/3

term is meaningful only when Cn = o(n1/4). For the
region where n1/4 � Cn � n1/2, the minimax regret is
essentially proportional to C2

n. This is illustrated in Figure 3.

Remark 3. It is worth pointing out that knowledge of σ
and Cn in the policy is primarily used to get the optimal
dependence of σ4/3C

2/3
n in the minimax regret. One can

still get a regret that grows as n1/3 even without the knowl-
edge of these parameters if it is in the achievable regime by
taking them to be a fixed constant in the restart criterion.

2.5. Fast computation

Last but not least, we present a fast and practical implemen-
tation of our proposed algorithm, which reduces the overall
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Figure 2. An illustration of ARROWS on a sequence with hetero-
geneous smoothness. We compare qualitatively (on the left) and
quantitatively (on the right) to two popular baselines: (a) restart-
ing online gradient descent (Besbes et al., 2015); (b) the moving
averages (Box & Jenkins, 1970) with optimal parameter choices.
As we can see, ARROWS achieves the optimal n1/3 regret while
the baselines are both suboptimal.

time-complexity for n step from a naive O(n2) algorithm
to a nearly linear O(n log n) algorithm.

Proposition 3. The run time of ARROWS is O(n log(n)),
where n is the time horizon.

2.6. Demonstrating the adaptivity of ARROWS

Figure 2 shows the results on a function with heterogeneous
smoothness with the hyperparameters selected according to
their theoretical optimal choice for the TV class.

The top panel illustrates that ARROWS is locally adaptive to
heterogeneous smoothness of the ground truth. Red peaks
in the figure signifies restarts. During the initial and final du-
ration, the signal varies smoothly and ARROWS chooses
a larger window size for online averaging. In the mid-
dle, signal varies rather abruptly. Consequently ARROWS
chooses a smaller window size. On the other hand, the linear
smoothers OGD and MA use a constant width and cannot
adapt to the different regions of the space. This differences
are also reflected in the quantitative evaluation on the right,
which clearly shows that OGD and MA has a suboptimal

Figure 3. An illustration of the minimax (dynamic) regret of fore-
casters and smoothers as a function of Cn. The non-trivial regime

for forecasting is when Cn lies between σ
√

log(n)
n

and σ n1/4

where forecasting is just as hard as smoothing. WhenCn > σn1/4,
forecasting is harder than smoothing. The yellow region indicates
the extra loss incurred by any minimax forecaster. The green region
marks the extra loss incurred by a linear forecaster compared to
minimax forecasting strategy. The figure demonstrates that linear
forecasters are sub-optimal even in the non-trivial regime. When
Cn > σ n1/2, it is impossible to design a forecasting strategy
with sub-linear regret. For Cn > σ n, identity function is optimal
estimator for smoothing and when when Cn < σ2 log(n), online
averaging is optimal for both problems.

Õ(
√
n) regret while ARROWS attains the Õ(n1/3) minimax

regret!

3. Concluding Discussion
In this paper, we studied the problem of forecasting bounded
variation sequences. We proposed a new forecasting pol-
icy ARROWS, which we show to enjoy a dynamic regret
of Õ(n1/3C

2/3
n σ4/3 + σ2 + U2 + C2

n). We also derived a
lowerbound which matches the upper bound up to a loga-
rithmic term which certifies the optimality of ARROWS in
all parameters. Further we exploited the sequential structure
of our policy to devise an implementation with nearly linear
run-time. Through the connection to linear estimation the-
ory, we assert that that many existing online learners, such
as those of Besbes et al. (2015) are linear forecasters and
cannot achieve the optimal rate.
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