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GPS Data

Location Data and Floating-Car Trajectory
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Sensors

Loop detector, camera, microphone, mobile sensors ...

Yan Liu (USC) ARTIFICIAL INTELLIGENCE FOR SMART TRANSPORTATION ICML Time Series Workshop



Transportation Al

Big data makes Al possible for transportation.
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Smart Transportation
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Ride-sharing Company Data
Government Data
Collaborators’ Data
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Outline

* Traffic estimation and forecasting

e Li et al. Diffusion Convolutional Recurrent Neural Network: Data-driven Traffic
Forecasting, ICLR 2018

 Demand forecasting

* Li et al, Spatiotemporal Multi-Graph Convolution for Ride-hailing Demand
Forecasting, AAAI 2019

* Multi-rate multi-resolution forecasting/interpolation

* Che et al, Hierarchical Deep Generative Models for Multi-Rate Multivariate Time
Series, ICML 2018
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Traffic Prediction

* Input: road network and past T’ traffic speed observed at sensors
e Qutput: traffic speed for the next T steps

Output: Predictions

Input: Observations

—
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/:00 AM 8:00 AM 8:10AM, 8:20AM, ..., 9:00 AM
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Existing Work

e KNN-based models

* Time series models
* Seasonal Autoregressive Integrated Moving Average (S-ARIMA)

 Support vector regression

* Qur prior work:

* Latent space models: Dingxiong Deng et al, Latent Space Model for Road Networks
to Predict Time-Varying Traffic. KDD, 2016

* Mixture LSTM: Y. Qi et al, Deep Learning: A Generic Approach for Extreme
Condition Traffic Forecasting. SDM 2016
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Challenges for Traffic Forecasting

Complex Non-linear, non-stationary
Spatial Dependency Temporal Dynamic
road 1 road 2
wif02d 1 road 2
. road 3 o . 1
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Challenges for Traffic Forecasting

* Spatial relationship among traffic flow is non-Euclidean and directed

road 1 road 2
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Traffic Forecasting with Convolution on Graph

* Model spatial dependency with proposed diffusion convolution on graph

Diffusion Convolutional
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* Yaguang Li et al, Diffusion Convolutional Recurrent Neural Network: Data-driven Traffic Forecasting. ICLR, 2018
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Spatial Dependency in Traffic Prediction

 Spatial dependency among traffic flow is non-Euclidean and directed
Closein  _sc . Similar
Sensor 1 Sensor 2 Euclidean traffic
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Spatial Dependency Modeling

* Model the network of traffic sensors, i.e., loop detectors, as a

directed graph
* Graph G = (V,A4)
e Vertices V: o0 sensors

* Adjacency matrix A: = weight between vertices

Aij = exXp <—

ph_2nn json

distnet(vi, vj)z

o2

distnet(vi, vj): road network distance from v; to v;,

K: threshold to ensure sparsity, o

Yan Liu (USC)
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) if distnet(vi, vj) < K

ko)

variance of all pairwise road network distances
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Problem Statement

» Graph signal: X, € RIVI*P observation on G at time t
* |V|: number of vertices
e P :feature dimension of each vertex.

* Problem Statement: Learn a function g(-) to map T' historical graph
signals to future T graph signals

% O X1 Xer

B A
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Generalize Convolution to Graph

e Diffusion convolution filter: combination of diffusion processes with different

steps on the graph.
Transition matrices of

/ the diffusion process

K—1
_ 1 \k L ' lexity: O (K
X, *c fo = 2 (HR(DO A) )X:,p earning complexity: O(K)
k=0
=0, + 6, + 0, +...+ 0
Example diffusion filter 0 Step 1 Step 2 Step K Step
Centered at © Diffusion Diffusion Diffusion Diffusion
Min Max
Filter weight i

*~ : diffusion convolution, D,: diagonal out-degree matrix.
m ARTIFICIAL INTELLIGENCE FOR SMART TRANSPORTATION ICML Time Series Workshop



Generalize Convolution to Graph

e Diffusion convolution filter: combination of diffusion processes with

different steps on the graph. Dual directional diffusion to model

upstream and downstream separately

K1 / .

X.p*g fo = Hk 1(D51A) + ekz(Dl_lAT)
Example diffusion filter 0 Step 1 Step 2 Step K Step
Centered at © Diffusion Diffusion Diffusion Diffusion
Min Max

*¢ « diffusion convolution, D,: diagonal out-degree matrix, D;: diagonal in-degree matrix

weight -
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Advantage of Diffusion Convolution

K-1
X., *c fo = z (ek,l(D,;lA)k + ek,z(D,—lAT)k ) X.,
» Efficient =0
* Learning complexity: O(K)
e Time complexity: O(K|E|), |E| number of edges

* Expressive

* Many popular convolution operations, including the ChebNet [Defferrard et al.,
NIPS “16], can be seen as special cases of the diffusion convolution [Li et al. ICLR
’18].

*¢ : diffusion convolution, D,: diagonal out-degree matrix, D;: diagonal in-degree matrix

* Defferrard, M et al, Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, NIPS, 2016
* Yaguang Li et al. Diffusion Convolutional Recurrent Neural Network: Data-driven Traffic Forecasting, ICLR, 2018
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Diffusion Convolutional Recurrent Neural Network

 Diffusion Convolutional Recurrent Neural Network (DCRNN)
* Model spatial dependency with diffusion convolution
* Sequence to sequence learning with encoder-decoder framework

Diffusion Convolutional Diffusion Convolutional Diffusion Convolutional Diffusion Convolutional

Recurrent Layer Recurrent Layer Recurrent Layer Recurrent Layer
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* Yaguang Li et al. Diffusion Convolutional Recurrent Neural Network: Data-driven Traffic Forecasting, ICLR 2018
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Model Temporal Dynamics using Recurrent Neural Network

Multi-step ahead prediction with RNN

Current Time
Teach the model to deal with its own error.

DCGRU = DCGRU

» DCGRU

Error Propagation

© ©

@ Model prediction
@ Observation or
ground truth

Yan Liu (USC)

®

» DCGRU

-

DCGRU == DCGRU

\ Previous

is fed into
the network

ARTIFICIAL INTELLIGENCE FOR SMART TRANSPORTATION ICML Time Series Workshop

20



Improve Multi-step ahead Forecasting

* Traffic prediction as a sequence to sequence learning problem
* Encoder-decoder framework

Backprop errors from multiple steps.

&)
11154 $65 ;I;(sG

L ¢

» DCGRU » DCGRU » DCGRU

& © ©
.\

X1,X2,X3 = Xy Current Time

!

X1, X2, X3 = X4, X5, Xg

DCGRU » DCGRU » DCGRU

© © ©

@ Model prediction

Ground truth becomes

Decoder unavailable in testing.

Encoder

@ Observation or
ground truth * Sutskever et al. Sequence to sequence learning with neural networks, NIPS 2014
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Improve Multi-step ahead Forecasting

* Improve multi-step ahead forecasting with scheduled sampling

Current Time

DCGRU

A

DCGRU

» DCGRU

Scheduled sampling:

© © ©

@ Model prediction

@ Observation or
ground truth

Encoder

Yan Liu (USC)

Choose to use the
previous ground truth or
model prediction by
flipping a coin

Decoder

* Bengio,Samy et al. Scheduled sampling for sequence prediction with recurrent neural networks. NIPS 2015
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Diffusion Convolutional Recurrent Neural Network

 Diffusion Convolutional Recurrent Neural Network (DCRNN)
* Model spatial dependency with diffusion convolution

* Sequence to sequence learning with encoder-decoder framework
* Improve multi-step ahead forecasting with scheduled sampling

Diffusion Convolutional Diffusion Convolutional

Diffusion Convolutional Diffusion Convolutional
Recurrent Layer Recurrent Layer Recurrent Layer Recurrent Layer
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* Yaguang Li et al. Diffusion Convolutional Recurrent Neural Network: Data-driven Traffic Forecasting, ICLR 2018
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Experiment - Datasets

* METR-LA:

—
207 traffic sensors in Los Angeles i . "n
* 4 monthsin 2012 ’f"--‘.,_,,,. 2 &
* 6.5M observations
(] o
* PEMS-BAY: e AT
e 345 traffic sensors in Bay Area
* 6 monthsin 2017 W~ -\
* 17M observations T AT -....:‘ N
. .! Santa C a";.£~ o\ ‘}
‘: — o Sen Jose 8%
e M 58 el O
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Experiments

 Baselines

 Historical Average (HA)

e Autoregressive Integrated Moving Average (ARIMA)
e Support Vector Regression (SVR)

* Vector Auto-Regression (VAR)

* Feed forward Neural network (FNN)

* Fully connected LSTM with Sequence to Sequence

framework (FC-LSTM)
* Task

* Multi-step ahead traffic speed forecasting te

Yan Liu (USC)
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Experimental Results

* DCRNN achieves the best performance for all forecasting
horizons for both datasets

METR-LA PEMS-BAY
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mHA EMARIMA EVAR ESVR ®WFNN ®FCGLSTM mDCRNN mHA WARIMA EMVAR MSVR MFNN MFCLSTM M DCRNN
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Effects of Spatiotemporal Dependency Modeling

* w/o temporal: removing sequence to sequence learning.

* w/o spatial: remove the diffusion convolution.

Removing either spatial or temporal modeling
results in significantly worse results.

15 Min 30 Min 1 Hour
m DCRNN w/o Temporal m DCRNN w/o Spatial = DCRNN

Yan Liu (USC) ARTIFICIAL INTELLIGENCE FOR SMART TRANSPORTATION
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Outline

* Traffic estimation and forecasting

e Li et al. Diffusion Convolutional Recurrent Neural Network: Data-driven Traffic
Forecasting, ICLR 2018

 Demand forecasting

* Li et al, Spatiotemporal Multi-Graph Convolution for Ride-hailing Demand
Forecasting, AAAI 2019

* Multi-rate multi-resolution forecasting/interpolation

* Che et al, Hierarchical Deep Generative Models for Multi-Rate Multivariate Time
Series, ICML 2018

Yan Liu (USC) ARTIFICIAL INTELLIGENCE FOR SMART TRANSPORTATION ICML Time Series Workshop
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Introduction

@ More than 18 billion ride-hailing trips worldwide in 2018*
— Twice as much as the world population.

@ Benefit of better ride-hailing demand forecasting

Better Vehicle
Dispatching

|\ \ /
\ \ //
\ \ /]
\ \ /1
\ \ /
\ / \
/ \ / \
/ \ / \
/ / \
/ \/ \

*

Yan Liu (USC)

Higher vehicle
utilization

\ _

, Nov 2018.
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Early congestion
warning
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http://www.businessofapps.com/data/uber-statistics/

Region-level Ride-hailing Demand Forecasting

@ Input: past T observations of demands of all |V]| regions

@ Output: demands of all |[VV] regions in the next time stamp

Input

RTX|V|

Output

SR mEE

AR

Complicated spatial and temporal correlations

Yan Liu (USC)
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Related Work

@ Spatiotemporal forecasting on grid

— Classical settings for demand forecasting problem

— CNN-based approaches: region-wise relationship is Euclidean
e DeepST/STResNet: Crowd flow forecasting (Zhang et al., 2017)
 DMVST: Demand forecasting (Yao et al., 2018)

Hard to capture the non-Euclidean correlations

@ Spatiotemporal forecasting on graph
— LinUOTD: handcrafted feature + LR for demand forecasting (Tong et al., 2017)

— DCRNN/ST-GCN: Graph convolution based traffic forecasting (Li et al., 20183, Yu et al., 2018, Li et
al., 2018b, Yan et al., 2018)

Hard to capture the multimodal correlations

Yan Liu (USC) ARTIFICIAL INTELLIGENCE FOR SMART TRANSPORTATION ICML Time Series Workshop
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Multimodal Correlations among Regions

@ Spatial proximity

— Region 1 and 2 T | |
@ Functional similarity ® S
— Regions with similar context show | ;' et
similar demand patterns - @__’_ N A @_ AP
— Region 1and 3 e || TR R
@ Road connectivity i @ A
— High-speed transportation —— f e Qe
facilitate correlation Highway 2/ [ @ A_ A_

— Region 1and 4
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Spatiotemporal Multi-Graph Convolution Network

O Region

— Correlation

Yan Liu (USC)

Reweight and aggregate
temporal observations

RNN | el
Contextual Gating U

Contextual Gated RNN

Encode pair-wise
correlations using grap

ﬁ

Spatial proximity

Capture spatial correlations
H2mong regions with multi-
graph convolution

Generate prediction

Graph convolution

Aggregat

e

Graph convolution

ion

— [

Connectivity

Graph convolution
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CGRNN: Context-aware Temporal Aggregation

e Summarize contextual
information

|V| regions

e C(Calculate gates based on
interdependencies
between observations
with self-attention

* Reweight observations
with gates

* Aggregate reweighted
observations with share-
weight RNN

[X(t),X(t+1), ] € ]RTX|V|XP

7 € RTXlXP

T obse

Fpool(-)
—
vations Self-
attention
s eRT
ol I
Contextual
Gating

—

T reweighted
observations

[)’?(t),}‘((t+1)’ ] € ]RTXIVIXP

Share-weight RN
i

RNN

@)

T reweighted observations are aggregated with
RNN
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Spatiotemporal Multi-Graph Convolution Network

Reweight and aggregate
observations

__n -2 8 ;‘“ > (0’4 RNN
..n."';;_ ih .““ 3 Contextual Gating U
R 0L O Y

1 Ne Contextual Gated RNN

O Region

Encode pair-wise
correlations using
graphs

o -

Spatial proximity

o
-> I T

Func. similarity

— Correlation

Capture spatial correlations
among regions with multi-

graph convolution

gl

Graph convolution
Aggrega
q f? e 00
Graph convolution
ﬁ i i e 00

Connectivity

Graph convolution

Generate prediction

ion
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Multi-graph Convolution

f(Ai; 0;)KV

V)

H = MGC(X) = o(Agg
A; €EA
H € RIVIxP' [ F(456;) € RVIXIVI
-, Agg -
A; € A

Aggregation -

function Node aggregation

@ f(A;;0;): function of adjacency matrix 4; with parameter 9;

X € R|V|XP

— Polynomial of graph Laplacian, graph attention etc.

@ Agg: Aggregation function

— Sum, average, attention-based aggregation

W € ]RPXP’

S

Feature

transformation
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Datasets

@ Beljing:

— 1296 regions, 19M samples

— 10 months in 2017

@ Shanghai

mmmmmm

3;

HRERLE

— 896 regions, 13M samples

— 10 months in 2017

@ POI/Road network
— OpenStreetMap

Yan Liu (USC)
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Experiments

@ Baselines
— Historical Average (HA)
— Linear Regression (LASSO, Ridge)
— Vector Auto-Regression (VAR)

— Spatiotemporal Auto-Regressive Model (STAR)
— Gradient Boosted Machine (GBM)

— Spatiotemporal Residual Network (ST-ResNet), with Euclidean grid
— Spatiotemporal graph convolutional network (ST-GCN), with road network graph

— Deep Multi-view Spatiotemporal Network (DMVST-Net), with Euclidean grid, SOTA for ride-hailing demand
forecasting

@ Task

— One step ahead ride-hailing demand forecasting

Yan Liu (USC) ARTIFICIAL INTELLIGENCE FOR SMART TRANSPORTATION ICML Time Series Workshop



Experimental Results

@ ST-MGCN achieves the best performance on both datasets
— 10+% improvement*.

18.0 -

Beijing Shanghai

ouy
App\roach

14.0 -

ovuy
App\roach

)

m HA m LASSO mRidge m VAR mSTAR m GBM m STResNet m DMVST-Net m ST-GCN m ST-MGCN

10.0 -

Root Mean Square Error
=

8.0 -

6.0 -

10+% improvement on real-world large-scale datasets
*In terms of relative error reduction of RMSE.
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Experimental Results

@ Both spatial and temporal correlations modeling are necessary

— Removing either graph component leads to significantly worse performance.
— With CGRNN, ST-MGCN achieves the best performance.

III. 10.0 - II..

= [y
N w
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= =
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=
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Root Mean Square Error
=
=
(0]

=
o
w
[y
o
(92}

10.0 -

m w/o Spatial Proximity m w/o Functional _
= w/o Transportation = ST-MGCN m Average Pooling mCG mRNN mCG+ RNN
Effect of spatial correlation modeling Effect of temporal correlation modeling

Yan Liu (USC) ARTIFICIAL INTELLIGENCE FOR SMART TRANSPORTATION ICML Time Series Workshop 40



Outline

* Traffic estimation and forecasting

e Li et al. Diffusion Convolutional Recurrent Neural Network: Data-driven Traffic
Forecasting, ICLR 2018

 Demand forecasting

* Li et al, Spatiotemporal Multi-Graph Convolution for Ride-hailing Demand
Forecasting, AAAI 2019

* Multi-rate multi-resolution forecasting/interpolation

* Che et al, Hierarchical Deep Generative Models for Multi-Rate Multivariate Time
Series, ICML 2018

Yan Liu (USC) ARTIFICIAL INTELLIGENCE FOR SMART TRANSPORTATION ICML Time Series Workshop
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Outline

* Traffic estimation and forecasting

e Li et al. Diffusion Convolutional Recurrent Neural Network: Data-driven Traffic
Forecasting, ICLR 2018

 Demand forecasting

* Li et al, Spatiotemporal Multi-Graph Convolution for Ride-hailing Demand
Forecasting, AAAI 2019

* Multi-rate multi-resolution forecasting/interpolation

* Che et al, Hierarchical Deep Generative Models for Multi-Rate Multivariate Time
Series, ICML 2018

Yan Liu (USC) ARTIFICIAL INTELLIGENCE FOR SMART TRANSPORTATION ICML Time Series Workshop
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Introduction

* Multivariate Time Series (MTS) -- many real-world applications
* Healthcare, climate, traffic, financial forecasting, engineering...

rom Intensive Care Unats

# b Blein Aneisl Blosd Prestise
& Mean faraay Presaoe
L
e el
[ ]
o
r o) M :-* n_u;
a l:'lr‘ l“l‘ [ W i I II n ) reweri: N 'L'J;Lw‘ ="
" [ [ L.'. 'n..ll ) %
T W % % % =

* One of the key challenges -- Multi-Rate Multivariate Time Series (MR-MTS)
* Different sampling rates
e Multiple data sources / sensors

Yan Liu (USC) ARTIFICIAL INTELLIGENCE FOR SMART TRANSPORTATION ICML Time Series Workshop
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Motivation

* Major challenges of modeling MR-MTS
* Need to handle different sampling rates
* Multi-scale temporal dependencies
* Complex underlying generation mechanism

* Existing solutions to MR-MTS forecasting/interpolation problems

* Single-rate model?

(Kalman filter, VAR, deep Markov models, ...)

* Ignoring dependencies across different rates

e Simple imputations?

(mean-imputation, Spline, MICE, MissForest, ...)

* May introduce unrelated/hide necessary dependencies

 Multi-rate discriminative models? (PLSTM, HM-RNN, ...)
* Not able to learn how the data is generated

Yan Liu (USC)
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Motivation

* Major challenges of modeling MR-MTS
* Need to handle different sampling rates
* Multi-scale temporal dependencies
* Complex underlying generation mechanism

* Key point

* To learn the latent hierarchical structures of the data generation mechanism

* Our proposed solution
* VIR-HDIIM: Multi-Rate Hierarchical Deep Markov Model

Yan Liu (USC) ARTIFICIAL INTELLIGENCE FOR SMART TRANSPORTATION
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Overview

* Problem definitions

* Input -- MR-MTS of L different sampling rates and T time steps (x{#)

e Case 1 -- Forecasting problem
1:L

* Output -- Given xi'%, predict X

* Case 2 -- Interpolation problem

e Output -- Fill-in missing values of lower sampling rates in x; %

* MR-HDMM: Multi-Rate Hierarchical Deep Markov Model

« Component -- a generation model and an inference model

* Motivation -- capturing hierarchical structures in underlying data generation process
* Learnable switches
e Auxiliary connections
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Generation Model

{:} Latent variable =
[ | oObservation 2

Uinabserved data

.....

= =+ Auxiliary connections

Yan Liu (USC)

) saces  SOIViNG marginal MLE?

* Transition
* Learning latent states z
* To capture

* Learnable switches
* Update-and-reuse

Reuse
Update,

* Emission
* Generating MR-MTS x
* To capture
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* Auxiliary connections
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Inference and Learning

* Keep similar structure as the generative model

» Keeping the Markov properties of z
* Inheriting the same switches s
* Capturing MR-MTS observation by multiple RNNs

e Maximize the variational evidence lower bound
(ELBO) o
« Conditional likelihood ) ) Fy .o loge, (+15")

t=11=1

e KL at each time step and for each layer

T T L
Z[EQ L) PkL (Q¢>(Zt|x1T zi- e (zt17¢-1) +ZZEQ “(zl_,,z" 1) Dk Q¢(Zt|x1r Zi-1, 3t 1)||P9(Z%—|Zé—1;zé_1))

t=1 t=11=2

Lateni variable =

O
| | oObservation =

rrrr

Jointly learning all parameters [ Unobserved data

Switcher =

D
by an d <> Inference RNN h
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Experimental settings

* Datasets
| Domain | Dataset | #of Samples | Sampling Rates | i of Variables | Time Series Length_
Healthcare MIMIC-IIl 10709 (admissions) 1/4 /12 Hours 7/12 /44 72 Hours
Climate USHCN 100 (years) 1/5/ 10 Days 70/69 /69 365 Days

e MIMIC-III: 5 runs X 5-fold CV (train/valid/test split)
e USHCN: 5 runs of train/valid/test split with 1-month stride

* Forecasting baselines
* Single-rate: Kalman Filter, VAR, Deep Markov Model, HM-RNN, LSTM, and PLSTM
* Multi-rate: Multiple KF, Multi-Rate KF, and two simplified models of MR-HDMM

* Interpolation baselines
* Imputation: Mean, CubicSpline, MICE, MissForest, Softimpute
* Deep learning: Deep Markov Model and the two simplified models of MR-HDMM
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Quantitative results

* Forecasting

* Interpolation

Yan Liu (USC)

MIMIC-III USHCN
Method \ Dataset All HSR MSR LSR | AllL HSR MSR LSR
Kalman Filter (KF) 1.91x10%  3.34x108  8.38x10° 1.22x10° | 1.236 1.254 1.190  1.148
Vector Autoregression (VAR) 1.233 1.735 0.779 0.802 | 2415 2579  1.921  1.748
Single-Rate Deep Markov Model (DMM) 1.530 1.875 1.064 1.070 | 0.795 0.608 0.903 0.877
Baselines ~HM-RNN 1.388 1.846 0.904 0713 | 0.692 0594 1.151 0.775
LSTM 1.512 1.876 1.006 1.036 | 0.849 0.688 0.934 0.928
PLSTM 1.244 1.392 1.030 1.056 | 0.813 0.710 0.870  0.915
Multiple KF 2.05x1018  3.58x10™  3.63x10* 9.54x102 | 1.212  1.082 1.727 1.518
Multi-Rate ~ Multi-Rate KF 1.691 2.289 0.944 0.860 | 0.628 0.542  0.986  0.799
Baselines  Multi-Rate DMM (MR-DMM) |  1.061 1.192 0.723 1.065 | 0.667 0.611 0.847 0.875
Hierarchical DMM (HDMM) 1.047 1.168 0.702 1.076 | 0.626 0.568 0.815 0.836
MR-HDMM 0.996 1.148 0.678 0.911 [ 0591 0541 0.742| 0.795
MIMIC-III USHCN
Method \ Dataset In-Sample Out-Sample | In-Sample
Simple-Mean 3.812 3.123 0.987
Imputation  CubicSpline 3.713 3.212x10* 0.947
stehnes MICE 3.747 7.580% 102 0.670
MissForest 3.863 3.027 0.941
Softimpute 3.715 3.086 0.759 HSR/MSR/LSR:
. DMM 3.714 3.027 0.782 High/Mid/Low sampling rate
Deg‘;s[éia;:;“g MR-DMM 3.710 3.021 0.696
HDMM 3.790 3.100 0.750 ln/Out_Samp/e:
MR-HDMM 3.582 2.921 0.626 Interpolating training/testing dataset
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Visualizations of the learned latent hierarchical structures

* First 48 hours of an admission from MIMIC-IIl dataset

s3
S

y

0 10 20 30 40 48

Hours
: update of higher-layer states (s3)
- update of lower-layer states (s?)
* Higher layer = fewer updates = longer-term dependencies

* A 1-year climate observation from USHCN dataset

53. | 4 A . lh_l_ll W ila—u-‘—,—L-L-—-d—ln A A I _J
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0 50 100 150 200 250 300 350
Days

. precipitation records
e Changes in precipitations = significant differences = captured by the higher layer
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Outline

* Traffic estimation and forecasting

e Li et al. Diffusion Convolutional Recurrent Neural Network: Data-driven Traffic
Forecasting, ICLR 2018

 Demand forecasting

* Li et al, Spatiotemporal Multi-Graph Convolution for Ride-hailing Demand
Forecasting, AAAI 2019

* Multi-rate multi-resolution forecasting/interpolation

* Che et al, Hierarchical Deep Generative Models for Multi-Rate Multivariate Time
Series, ICML 2018
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Open Dataset

~_KDD2017

KDD Cup 2017

Highway Tollgates Traffic
Flow Prediction

UBER

Uber Movement

U.5. Department of Transportation
Federal Highway Administration

Federal Highway Administration Research and_vTéé_I‘;l_nJQ

Coordinating, Developing, and Delivering Highway Trans

Federal Highway Administration

Next Generation Simulation (NGSIM) Program

Yan Liu (USC)
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OpenData

Public Data

o  J
DiDi
GAIA Open Dataset

Trajectory and OD data
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