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Abstract
Learning representations of graph data is essential to many real-world machine
learning problems, and therefore, there has been a recent push in representation
learning community to adapt deep learning techniques for graph-structured data,
either as input or output of the model. However, almost all of these techniques
only focus on either the input or the output graph space and not both. In this paper,
we propose a neural model for learning deep functions on the space of directed
acyclic graphs (DAGs) where both the domain and the range of the target function
are DAG spaces, and develop a DAG-to-DAG translation model. We consider a
supervised learning mechanism to efficiently train our DAG-to-DAG simplification
model. Our experiments show the ability of the model to learn the structural signals
and patterns in both input and output spaces, showing improved syntax measures
in generated outputs by over 20% and edge classification by 44%.

1 Introduction
Graphs play a crucial role in modeling complex interactions and relations among the components of
a given problem and as a result, in many real-world machine learning applications, the data naturally
appear in graph forms, in both the input and the output spaces. Therefore, both understanding
(i.e. embedding) and generating (i.e. synthesis) graph-structured data are essential to many problems;
examples of such problems include computation graph optimization [18], graph summarization [16],
SQL query optimization [25], program synthesis [4, 1, 3], and logical expression simplification
[20, 26]. For understanding graph-structured data, traditional techniques incorporate (unsupervised)
graph embeddings or fixed feature extractors to map graphs into real vector spaces [6]. More recent
frameworks learn such embeddings directly using a variety of graph neural networks[5, 14, 22, 9,
21, 12, 19]. For synthesis, classical methods typically use rule-based, grammar-driven techniques
[10, 11], while the more recent techniques try to learn the synthesis process directly via machine
learning [15, 23, 27, 4, 1, 3]. Mathematically, these neural methodologies for graph-structured data
can be seen as function approximation frameworks where either the domain or the range of the target
function is a graph space and therefore embedding and synthesis are treated separately.

In this paper, we bring the embedding and synthesis methodologies under one unified framework
such that one can learn functions from one graph space onto another graph space without the strong
assumption of independence between the embedding and generative process. In particular, we focus
on learning functions on the space of directed acyclic graphs (DAG), and refer to the learned function
as DAG-function. The applications of learning such DAG-functions range from program/query
optimization to circuit simplification where both the inputs and the outputs are represented as DAGs.
DAGs can also be seen as the generalization of sequences where each element in the sequence (node
in the DAG) can have more than one direct predecessor. As a result, our proposed neural DAG-
to-DAG learning framework generalizes the sequence-to-sequence (Seq2Seq) learning framework
used for machine translation [24] by proving support for general DAG structures rather than the
single-predecessor chain structure of Seq2Seq. Furthermore, we propose several differentiable
structural loss functions to efficiently train DAG-functions in the supervised setting. In summary, the
main contributions of this paper are: (a) We study the problem of DAG-to-DAG simplification as a
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Figure 1: The encoder embeds of the input graph. The decoder generates an output graph conditioned on
this embedding by first determining the number of nodes N , then generating N nodes sequentially. At each
step n, edges from existing nodes to the new node vi are determined as well as the node feature xvi .

translation problem, which enjoys wide application in computation optimization problems and graph
summarization. (b) We develop a general encoder-decoder framework for learning functions from a
DAG space onto another DAG space - aka DAG-to-DAG translation. (c) We empirically investigate the
effectiveness of several differentiable structural loss functions in order to set up a unified supervised
learning framework for training DAG-function and adapt our supervised DAG-to-DAG translation
framework to learn a DAG-function for the Boolean circuit simplification problem. We present
experiments on the problem of logical circuit simplification and show superior performance compared
to baselines in structural and syntactical measures.

2 Related Work
Several deep graph-structured generative models have been developed for graph synthesis that mostly
focus on producing random samples from a learned distribution e.g. DeepGMG [15], GraphVAE
[23], GraphRNNs [27]. These models have found applications in synthesizing structures that obey
some grammar or distribution, such as unobserved but plausible molecular structures (e.g. [23], [13],
and others). In contrast to these models, our goal is to generate outputs conditioned on single inputs,
much like a translation model. There has been several deep models proposed for embedding graph-
structured data, e.g. [22, 5, 14, 22, 9, 21, 12, 19, 2]. In this paper, we employ the model from [2] since
it specially considers DAG structures. Similar to our proposed work, the domain-specific tree-to-tree
model for the program translation introduced in [7] generates an output structure conditioned on a
single input with the goal of matching the semantic meaning of the input graph. However, our model
can work on more general graph structures as long as a node ordering is given.

3 DAG-to-DAG Recursive Neural Network
In this section, we develop a new framework for DAG-to-DAG learning that encodes the structure of
inputs and, conditioned on these inputs, generates DAG outputs and we specify a supervised approach
for learning on this framework.

Formulation Let Gin = (Vin, Ein) and Gout = (Vout, Eout) be two DAGs such that Gout =
F(Gin) for some DAG-function F . The nodes v ∈ Vin, Vout are described by feature vectors xv
that encode node properties. For DAGs, a natural node order is given by the topological sort of the
graph. For each node v in a DAG G, predecessor nodes u ∈ π(v) are the set of nodes such that
there is an edge eu→v ∈ EG. The goal is to learn function F given a training set of paired input
and output graphs. For example, in the case of logical circuit simplification, Gin is a logical circuit,
the DAG-function F represents a simplification algorithm, and Gout is a semantically equivalent
simplified form of the expression represented by Gin. Features xv encode the type of gate or variable
corresponding to each node. An example of logical expression simplification is depicted in Figure 2

The D2DRNN Model We propose an encoder-decoder design using recursive neural networks to
model the function F(·); we refer to this model as D2DRNN. In particular, the model is composed of an
encoder Eα with model parameters α which computes a fixed-size embedding of the input graph Gin,
and a decoder Dβ with parameters β which takes as input the embedding and produces an output
graph Ĝout. Thus, we define the DAG-function as Fθ(Gin) := Dβ(Eα(Gin)) where θ := 〈α, β〉.
DAG Encoder We use as an encoder function the recently developed Deep-Gated DAG Recursive
Neural Network (DG-DAGRNN)[2] This model generalizes stacked RNNs on sequences to DAG
structures. Each layer of the DG-DAGRNN is comprised of gated recurrent units (GRUs) [8], repeated
for each node v ∈ Gin. The GRU corresponding to node v has as input an aggregated representation
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Figure 2: Logical expression simplification as a graph optimization problem

of the hidden states of the units corresponding to the predecessors π(v). We use a sum operator as
the aggregation function. For an aggregation function A, the hidden state hv is given by

hv = GRU(xv,h
′
v), where h′v = A ({hu|u ∈ π(v)}) . (1)

Since the topological sort of Gin defines an ordering of nodes, all the hidden states hv can be
computed with a single forward pass along a layer of the DG-DAGRNN, computing equation 1 for each
node in topological order. This differs from many existing graph embedding models that require
loopy message passing to compute node representations [5, 14]. The encoder contains multiple layers,
each layer passing hidden states to the recurrent units in subsequent layer corresponding to the same
node. Inspired by the findings in [24] that sequence learning benefits from processing some sequences
in backwards order, some layers in the encoder process the DAG nodes in the reverse order.

DAG Decoder The encoder provides an embedding Hin = Eα(Gin), which serves as the input
for the DAG decoder. We generate an output graph iteratively. First, the size of the output graph
(i.e. the number of nodes) is calculated by the Length module fLength. For this function, we use
a multi-layer perceptron (MLP) with Poisson regressor output layer, which takes the input graph
embeddingHin and outputs the mean N of a Poisson distribution describing the output length.

Once the length N is determined, for n = 1, . . . , N , a node vn is added to the output graph. Whether
we should add an edge eu,vn for all nodes u ∈ {v1, . . . , vn−1} already in the graph is determined
by the NodeScore module, which is a MLP. Since the output nodes are generated in the topological
order as well, edges are always directed from nodes added earlier to nodes added later in the process.

For each generated node v, we compute the hidden state hv using a similar mechanism as the encoder:
we aggregate the hidden states of its predecessors and feed it to a GRU. The other input of the GRU
cell is set to the aggregated states of all the sink nodes generated so far. For the first node, the hidden
state is initialized based on the encoder’s output. Next, the output node features are generated based
on its hidden state using the Feature module fFeature, which is another MLP. Finally, once the last
node is generated, edges are introduced with probability 1 for sinks in the graph to ensure a connected
graph with only one sink node as an output. This process is detailed in Algorithm 0 in Appendix A.

Loss Function We propose a supervised learning framework for DAG-to-DAG translation. Given a
training dataset D = {G(i)

in , G
(i)
target} and loss L, we optimize the model parameters θ = 〈α,β〉 to

minimize the loss using end-to-end backpropagation. Our loss is defined as:

L = Llength + Lnodes + Lstructure, (2)

where Llength = Poisson-NLL-Loss(fLength(Hin), |Vtarget|) ≈ |Vout|−|Vtarget| log(|Vout|) mea-
sures the difference between the lengths of the output and the target graphs while Lnodes =
Cross-Entropy(Vout, Vtarget) quantifies the difference between the node feature vectors of the output
and target. The structure loss Lstructure measures the difference between the output and the target
in terms of graph structure. For the structure loss, we have empirically tested four different options:
(1) the binary cross-entropy (BCE) loss, where the presence/absence of an edge is treated as binary
classification, (2) the Frobenius norm of the difference between the output and the target adjacency
matrices, (3) the `1-norm of the same quantity, and (4) the diffusion loss, where the `2-distance be-
tween the diffusion results of a random unit vector over the output and the target graphs is calculated.
An empirical comparison of these loss functions on the validation set is demonstrated in Appendix B.

4 Experiments
In order to validate our method, we test on the DAG-to-DAG problem of circuit simplification [20, 26],
a well-suited problem for our model since it involves encoding and synthesizing DAGs.
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Circuit Simplification In circuit simplification, a logical expression is reduced to a logically-
equivalent expression with fewer operations, as depicted in Figure 2. We construct a dataset of
12,500 random syntactically-valid circuits with 15-30 nodes, each of one of four types: variables,
NOT-gates, OR-gates, and AND-gates. Ground truth simplified graphs were generated by simplifying
generated expressions using the Sympy Python library [17] and converting these expression to their
graph representation. See Appendix C for details of the dataset. Note that in this setup, we do not
explicitly enforce any syntactical or semantical (i.e. logical equivalence) constraints during training.
Even though incorporating such constraints are essential for learning a practical circuit simplifier, in
this paper, we only study the extent the pure representational capacity of our model can learn these
constraints implicitly. Nevertheless, enforcing such constraints explicitly is a topic of our future work.

Baselines We consider translation models that condition the output graph on a single input rather
than sample from an unconditional distribution of graphs. The Seq2Seq model [24] considers
topologically-sorted nodes in a graph as a sequence and generates an output sequence of nodes.
This model does not generate edges or consider the structure of the input graph, only the order of
nodes. We also consider extensions of this baseline, sequence-to-DAG (Seq2DAG) and DAG-to-
sequence (DAG2Seq) models. In the former, the encoder consumes the topologically ordered nodes
and generates a DAG-structured output using the same decoder as the full D2DRNN model. Conversely,
the latter uses the same DG-DAGRNN encoder as the full D2DRNN to produce an embedding of the
input graph, but generates only a sequence of nodes rather than the full structure of a DAG.

Evaluation Metrics In our experiments, error measures are calculated on the held-out test set of
2,500 circuits. The sequence edit distance measures the Levenshtein edit distance between the output
and target sequences. This measure gives an error on generated node types as well as the order in
which they were generated. Next, we calculate the average difference in the number of nodes and the
number of edges between the generated and target circuits. We also consider several syntax-related
error measures. The node syntax error measures the percentage of generated nodes that violate
the fan-in constraint for each node type. For circuit simplification, the number of output nodes is
never greater than that of the input circuit, so we measure the percentage of outputs that violates
this constraint. Finally, we measure the total percentage of graphs do not violate any of the above
syntactical constraints. The results are listed in Table 1. In the case of the Seq2Seq and DAG2Seq
models, since no graph structure is generated, we cannot evaluate the graph-based error measures. As
shown in the table, the D2DRNN model where both the encoder and the decoder operate on DAGs
outperforms the baselines especially regarding the structural metrics. On the other hand the Seq2Seq
model which treats DAGs as mere sequences does not outperform any of the DAG-aware methods,
which in turn shows the necessity of taking the DAG structure into consideration.

D2DRNN Seq2DAG DAG2Seq Seq2Seq

Length loss 0.062 0.060 – –
Node loss 1.717 1.647 0.908 0.924
Seq. edit distance 0.499 0.492 0.452 0.447
Num. nodes 2.567 2.206 2.0 3.0
Num. edges 10.60 2.557 – –
Edge classification 0.139 0.365 – –
Node syntax 0.221 0.666 – –
Num. vars 0 0 0.121 0.0158
Graph syntax 0.793 0.994 – –

Table 1: Errors for full model (DAG2DAG) and baselines. In all cases, lower is better Though all models can
learn some aspects of the sequence of nodes, the full model outperforms the baselines in syntax measures

5 Conclusion
In this paper, we proposed a novel neural graph synthesis framework that learns to summarize a
DAG while preserving the syntactic structure. Both our proposed encoder and decoder are structure-
aware, which in turn enables them to outperform the baselines that treat DAGs as mere sequences,
as our experiments showed. Furthermore, for the task of logical circuit simplification, compared
to baselines, our model were able to implicitly pick up syntactical constraints without actually
employing any explicit syntactical or semantical loss terms during training. This further shows the
excellent representational power of the proposed model. As future work, we intend to incorporate
Reinforcement Learning to directly encode syntactical and semantical constraints into the learning
process of DAG-to-DAG models.
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A The Decoding Algorithm

Algorithm 1 The Decoder Module: Gout = D(Hin, δ)
Hin: the embedding of Gin
δ: the edge addition threshold

1: N ← fLength(Hin) . Compute the size of the output graph
2: hv0 ← finit(Hin), v0 ← fFeature(hv0) . Compute hv and v for the first node
3: HCurrent ←Hin . Initialize the current graph embedding
4: V ← {v0}, E ← {}
5: for i = 1, . . . , N − 1 do
6: for u ∈ V where u 6= vi do
7: pedgeu,vi

← fNodeScore(hu,HCurrent)
8: if pedgeu,vi

≥ δ then
9: E ← E ∪ {eu→vi}

10: end if
11: end for
12: hvi ← GRU

(
A(hu : u ∈ Vsink),A(hu : u ∈ π(vi))

)
13: V ← V ∪ {fFeature(hvi)} . Compute the new node’s feature vector
14: HCurrent ← gagg(hv) . Update the graph embedding
15: end for
16: return Gout := (V,E)

B Comparing Different Structural Losses

Table 2 demonstrates different error metrics on the validation data when the DAG2DAG model was
trained using different structure loss functions. As the results show, the Frobenius norm loss and the
diffusion loss exhibit superior performance on the validation data compared to the other two losses.
As a result, in our experiments, we have chosen the diffusion loss for the structure loss function.
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BCE ‖ · ‖1 ‖ · ‖F Diffusion
Length loss 0.049 0.052 0.050 0.045
Node loss 2.063 2.453 1.959 1.544
Seq. edit dist 0.512 0.516 0.506 0.553
Num. nodes error 1.86 2.17 1.75 2.58
Num. edges error 2.06 2.29 2.12 2.69
Edge classification 0.604 0.591 0.674 0.362
Node syntax 0.215 0.229 0.198 0.205
Num. vars 0.001 0.102 0.008 0.00
Graph syntax 0.732 0.794 0.651 0.625

Table 2: Error metrics on the validation data for different choices of structure loss formulations during
training.

C Circuit Simplification Dataset

We construct a dataset of random circuits with 15-30 nodes (3-8 variables). Each node in the graph
corresponds to one of four node types: variables, NOT-gates, OR-gates, and AND-gates. Node features
are given by a one-hot encoding of the four node types. All generated circuits were valid, i.e. they
have a single sink node, NOT-gate nodes have a single input, variable nodes have no inputs, and OR-
and AND-gate nodes have at least two inputs.

To produce ground truth simplifications, the generated logical expressions corresponding to each
graphs were simplified using the Sympy Python library [17], which provides an equivalent expression
either in conjunctive normal form (CNF) or disjunctive normal form (DNF), depending on which
is more compact. Any circuits that simplified to True (tautology) or False (unsatisfiable) were
excluded. We use 10,000 circuit pairs for training and 2,500 pairs for testing. Node features are given
by a one-hot encoding of the four node types.
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