
• Tucker decomposition:

1. Abstract
• We formulate spatio-temporal sampling task as 

tensor sketching problem.
• We generalize sparse subspace embedding 

to low-rank tensor domain. 
• Our algorithm achieves accurate predictions 

with significant speed-up in social media 
and climate applications. 

Efficient Spatio-Temporal Sampling via Low-Rank Tensor Sketching
Rose Yu, Sanjay Purushotham, Yan Liu
{qiyu, spurusho, yanliu.cs}@usc.edu

4. Forecasting Formulation

6. Experiments

2. Spatio-Temporal Sampling

3. Tensor Representation
• Multivariate spatio-temporal data can be 

naturally represented by tensors.

5. Subsampled Randomized Low-rank Tensor Learning 

7. Reference
[1] Rose	Yu,	Dehua Cheng,	Yan	Liu.	Accelerated	Online	Low-Rank	Tensor	Learning	for	Multivariate	Spatio-Temporal	Streams	International	Conference	on	Machine	Learning (ICML),	2015
[2] Rose	Yu*,	Mohammad	Taha Bahadori*,	Yan	Liu.	(*Equal	Contributions) Fast	Multivariate	Spatio-temporal	Analysis	via	Low	Rank	Tensor	Learning	Advances	in	Neural	Information	Processing	Systems (NIPS),	2014,	Spotlight
[3] Bonilla,	Edwin	V.,	Kian	M.	Chai,	and	Christopher	Williams.	"Multi-task	Gaussian	process	prediction." Advances	in	neural	information	processing	systems.	2007.
[4] A.	Kulesza and	B.	Taskar.	Determinantal point	processes	for	machine	learning.	Machine	Learning,	5(2-3):123–286,	2012.	
[5] D.	P.	Woodruff.	 Sketching	as	a	tool	for	numerical	linear	algebra.	Theoretical	Computer	Sci- ence,	10(1-2):1–157,	2014.	

! = 1,… , &

'=
1,
…
,(

) = ℝ+×-×.

Space

Time

Variables

• Low-rank tensor can capture structures in 
spatio-temporal data [Yu 2014, 2015].

sampler

data

Definition: 
Identify important locations or time stamps 
and extract samples from them with the merit 
of computational efficiency 

Concatenate historical measurements of 𝐿 lags 𝒳%&',:,*,𝒳%&+,:,*…𝒳%&-,:,* = 𝒳/%,:,* ∈ ℝ2× 4- ×5

Goal: Learn a model tensor 𝒲 ∈ ℝ(4-)×4×5

𝒲	9 = argmin
𝒲

@ 𝒵:,:,*𝒲:,:,*, − 𝒳:,:,* C
+

*
subject	to					 rank 𝒲 ≤ 𝑅

sketching

tensor 
operation

optimal
result

tensor
operation𝜀

Double Sketching:
1. Sketching data tensor along time dimension.2. Sketching model tensor along locations and variables.

L2-Sparse subspace embedding [Clark && Woodruff 2013]:
for each column j, uniformly pick a row i ∈ {1,2,···M} and assign {−1, 1} with equal probability to 𝑺𝒊,𝒋 . 

𝒵 𝒳

𝒵	T 𝒳	U 𝒲′

𝑺𝒕

𝒲′𝑺𝟏𝒔

𝒲T𝑽𝟏

𝑽𝟐

𝑽𝟑𝐶𝐶𝒲

100 3000
Sketch Size

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Pa
ra

m
et

er
 E

st
im

at
e 

Er
ro

r Sparse
Gaussian
SRP

100 30000
Sketch Size

0

20

40

60

80

100

120

140

R
un

 T
im

e 
(s

ec
)

Sparse
Gaussian
SRP

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7

Foursquare AWS

Run Time

Sparse Gaussian SRP

Real-World Datasets：
• Foursquare: 121 user check-ins, 15 categories of business venues, 1200 time intervals.
• AWS: 153 weather stations measurements, 4 climate variables, 76 time stamps.
Settings: 90 % training data on both datasets for VAR model with different lags and average
run time.

Challenge:
• Voronoi diagram: no theoretical guanreee
• Sequential sampling [Krause 2008]:require 

submodular assumption
• Determinal point process [Kulesza 2012]:

requires expensive eigen-decomposition

Preliminary :

𝑁

𝒳
𝐽

𝐼

Accelerated Online Low-Rank Tensor Learning

cation of our interest, i.e., the multivariate spatio-temporal
stream analysis, both Z and X grow along the temporal di-
mension as time T increases. We define Wm = W:,:,m and
similarly for others, the unconstrained optimization prob-
lem at time T can be written as minW kWZ1:T �X1:T k2F,
where we omit the index m for simplicity. Suppose that at
time stamp T , we receive a new batch of data of size b, we
can update the parameter tensor in the k-th iteration W(k)

with two possible strategies: one is exact update, and the
other is increment update.

Exact update Notice that we can obtain a closed-form
solution of W (k) by using all the data from time stamp 1 to
T + b as follows:

W(k)
= X1:T+bZ

†
1:T+b.

where † denotes matrix pseudo-inverse. Note that the
pseudo-inverse can be computed efficiently via the Wood-
bury matrix identity (Woodbury, 1950). At each iteration,
we can compute the inverse of the complete data covari-
ance (Z1:T+bZ

>
1:T+b)

�1 by inverting a smaller matrix con-
structed from the new data ZT+1:T+b at a computational
cost linear to the batch size b, with a small memory over-
head to store the inverse of the previous covariance matrix
(Z1:TZ

>
1:T )

�1. We defer the details to Appendix B.1.

Increment update We can also incrementally update the
value of W given the new data as follows:

W(k)
= (1� ↵)W(k�1)

+ ↵XT+1:T+bZ
†
T+1:T+b.

The difference of the two updating scheme lies in the vari-
ables we store in memory. For exact update, we store the
data statistics required to reconstruct the model. It gives
an exact solution for the linear regression problem given
all the historical observations. For incremental update, we
store the previous model, compute the solution for current
data only, and then take a convex combination of two mod-
els. Note that different statistical properties of these two
updating scheme may require different theoretical analysis
tools, but the low-rank projection of the solution is invari-
ant to the updating strategy.

2.4. Online Low-Rank Tensor Approximation

In Step 2, we need to project the solution from Step 1 to
the low-rank tensor space. In ALTO, we measure the rank
with respect to the sum-n-rank of the tensor: We restrict
the maximum n-rank of tensor W over all modes to be no
larger than R. In order to obtain the n-rank projection,
we resort to Tucker decomposition (De Lathauwer et al.,
2000), which decomposes a tensor into a core tensor and
a set of projection matrices. The dimensions of the core
tensor are n-ranks of the tensor itself. The projection is

generally time consuming, as it usually involves SVD on
unfolded matrices at each mode of a full tensor. For the
online setting, this operation needs to be repeated for each
iteration, which is infeasible for large-scale applications. In
ALTO, we utilize the projection results from the last itera-
tion to approximate the current projection. It eliminates the
need of SVD on unfolded matrices of a full tensor. Instead,
it performs dimension reduction and computes the SVD on
unfolded matrices of a low-dimensional tensor.

Without the loss of generality, we elaborate ALTO via a
third order tensor. Given the Tucker decomposition of W 2
RN⇥N⇥N from the previous iteration:

W(k�1)
= S(k�1) ⇥1 U

(k�1)
1 ⇥2 U

(k�1)
2 ⇥3 U

(k�1)
3 .

we first augment each U
(k�1)
i 2 RN⇥R with K random

column vectors for i = 1, 2, 3, which are drawn from a zero
mean Gaussian distribution. These random column vectors
are introduced as noise perturbation. Then we apply Gram-
Schmidt process to create orthonormal augmented projec-
tion matrices V

(k�1)
i 2 RN⇥(R+K), which has K more

columns than U
(t�1)
i , for i = 1, 2, 3 respectively.

With augmented projection matrices V
(k�1)
i , we project

the tensor W(k) to an augmented core tensor S 0(k) with
dimension (R+K)⇥ (R+K)⇥ (R+K).

S 0(k)
= W(k�1) ⇥1 V

(k�1)>
1 ⇥2 V

(k�1)>
2 ⇥3 V

(k�1)>
3 .

Then we compute the rank-R approximation of the aug-
mented core by decomposing S 0(k):

S 0(k) ⇡ S(k) ⇥1 V
0(k)
1 ⇥2 V

0(k)
2 ⇥3 V

0(k)
3

where S(k) is the new core tensor with dimension R⇥R⇥R
and V

0(k)
i is of size (R + K) ⇥ R. We update the new

projection matrices as U(k)
i = V

(k�1)
i V

0(k)
i for i = 1, 2, 3.

And the final low-rank projection of the solution tensor of
current iteration is given by

W(k)
= S(k) ⇥1 U

(k)
1 ⇥2 U

(k)
2 ⇥3 U

(k)
3 .

We summarize the workflow of ALTO in Algorithm 1. The
rank-R approximation of the augmented core S 0(k) is com-
puted by iterating over all the modes and sequentially map-
ping the unfolded tensor into the rank-R subspace. We
name this procedure as low-rank Tensor Sequential Map-

ping (TSM), which is described in Algorithm 2.

ALTO is computationally efficient since the augmented
core tensor S 0(k) has dimension (R + K) ⇥ (R + K) ⇥
(R +K), which is much smaller than W(k). At each iter-
ation, the low-rank mapping procedure TSM only involves
top-R SVD on matrices of size (R + K) ⇥ (R + K)

2, in
comparison to the expensive top-R SVD on N⇥N2 matri-
ces in most existing low-rank tensor learning approaches.

𝑅 '

𝑅+

U1

1

𝐼

𝑅'

U2

1

𝑅+
U3

1

𝐾×' ×+ ×b≈

• Many spatio-temporal analysis tasks can 
be formulated as low-rank tensor learning 
problems.

？

• Tensor n-product:

𝑅 '

𝑅+

𝐼

𝑅'

×'

Accelerated Online Low-Rank Tensor Learning

cation of our interest, i.e., the multivariate spatio-temporal
stream analysis, both Z and X grow along the temporal di-
mension as time T increases. We define Wm = W:,:,m and
similarly for others, the unconstrained optimization prob-
lem at time T can be written as minW kWZ1:T �X1:T k2F,
where we omit the index m for simplicity. Suppose that at
time stamp T , we receive a new batch of data of size b, we
can update the parameter tensor in the k-th iteration W(k)

with two possible strategies: one is exact update, and the
other is increment update.

Exact update Notice that we can obtain a closed-form
solution of W (k) by using all the data from time stamp 1 to
T + b as follows:

W(k)
= X1:T+bZ

†
1:T+b.

where † denotes matrix pseudo-inverse. Note that the
pseudo-inverse can be computed efficiently via the Wood-
bury matrix identity (Woodbury, 1950). At each iteration,
we can compute the inverse of the complete data covari-
ance (Z1:T+bZ

>
1:T+b)

�1 by inverting a smaller matrix con-
structed from the new data ZT+1:T+b at a computational
cost linear to the batch size b, with a small memory over-
head to store the inverse of the previous covariance matrix
(Z1:TZ

>
1:T )

�1. We defer the details to Appendix B.1.

Increment update We can also incrementally update the
value of W given the new data as follows:

W(k)
= (1� ↵)W(k�1)

+ ↵XT+1:T+bZ
†
T+1:T+b.

The difference of the two updating scheme lies in the vari-
ables we store in memory. For exact update, we store the
data statistics required to reconstruct the model. It gives
an exact solution for the linear regression problem given
all the historical observations. For incremental update, we
store the previous model, compute the solution for current
data only, and then take a convex combination of two mod-
els. Note that different statistical properties of these two
updating scheme may require different theoretical analysis
tools, but the low-rank projection of the solution is invari-
ant to the updating strategy.

2.4. Online Low-Rank Tensor Approximation

In Step 2, we need to project the solution from Step 1 to
the low-rank tensor space. In ALTO, we measure the rank
with respect to the sum-n-rank of the tensor: We restrict
the maximum n-rank of tensor W over all modes to be no
larger than R. In order to obtain the n-rank projection,
we resort to Tucker decomposition (De Lathauwer et al.,
2000), which decomposes a tensor into a core tensor and
a set of projection matrices. The dimensions of the core
tensor are n-ranks of the tensor itself. The projection is

generally time consuming, as it usually involves SVD on
unfolded matrices at each mode of a full tensor. For the
online setting, this operation needs to be repeated for each
iteration, which is infeasible for large-scale applications. In
ALTO, we utilize the projection results from the last itera-
tion to approximate the current projection. It eliminates the
need of SVD on unfolded matrices of a full tensor. Instead,
it performs dimension reduction and computes the SVD on
unfolded matrices of a low-dimensional tensor.

Without the loss of generality, we elaborate ALTO via a
third order tensor. Given the Tucker decomposition of W 2
RN⇥N⇥N from the previous iteration:

W(k�1)
= S(k�1) ⇥1 U

(k�1)
1 ⇥2 U

(k�1)
2 ⇥3 U

(k�1)
3 .

we first augment each U
(k�1)
i 2 RN⇥R with K random

column vectors for i = 1, 2, 3, which are drawn from a zero
mean Gaussian distribution. These random column vectors
are introduced as noise perturbation. Then we apply Gram-
Schmidt process to create orthonormal augmented projec-
tion matrices V

(k�1)
i 2 RN⇥(R+K), which has K more

columns than U
(t�1)
i , for i = 1, 2, 3 respectively.

With augmented projection matrices V
(k�1)
i , we project

the tensor W(k) to an augmented core tensor S 0(k) with
dimension (R+K)⇥ (R+K)⇥ (R+K).

S 0(k)
= W(k�1) ⇥1 V

(k�1)>
1 ⇥2 V

(k�1)>
2 ⇥3 V

(k�1)>
3 .

Then we compute the rank-R approximation of the aug-
mented core by decomposing S 0(k):

S 0(k) ⇡ S(k) ⇥1 V
0(k)
1 ⇥2 V

0(k)
2 ⇥3 V

0(k)
3

where S(k) is the new core tensor with dimension R⇥R⇥R
and V

0(k)
i is of size (R + K) ⇥ R. We update the new

projection matrices as U(k)
i = V

(k�1)
i V

0(k)
i for i = 1, 2, 3.

And the final low-rank projection of the solution tensor of
current iteration is given by

W(k)
= S(k) ⇥1 U

(k)
1 ⇥2 U

(k)
2 ⇥3 U

(k)
3 .

We summarize the workflow of ALTO in Algorithm 1. The
rank-R approximation of the augmented core S 0(k) is com-
puted by iterating over all the modes and sequentially map-
ping the unfolded tensor into the rank-R subspace. We
name this procedure as low-rank Tensor Sequential Map-

ping (TSM), which is described in Algorithm 2.

ALTO is computationally efficient since the augmented
core tensor S 0(k) has dimension (R + K) ⇥ (R + K) ⇥
(R +K), which is much smaller than W(k). At each iter-
ation, the low-rank mapping procedure TSM only involves
top-R SVD on matrices of size (R + K) ⇥ (R + K)

2, in
comparison to the expensive top-R SVD on N⇥N2 matri-
ces in most existing low-rank tensor learning approaches.

U1

1

𝑅 '

𝑅+×𝑅b

𝒮(')𝐼

𝑅'

×U1

1

𝑅+

𝐼

？

𝒲	9 = argmin
𝒲

𝒳e −𝒳 C
+ + 𝜇 @ trace 𝒳e:,:,*𝐿𝒳e:,:,*2

5

*h'
subject	to					 rank 𝒲 ≤ 𝑅
𝒳/%,:,*𝒲:,i,* = 𝒳e%,i,*

Theoretical Analsysis
Lemma 1 (Adapted from [5]): For any 0 < 𝜹 < 𝟏, and for 𝑺𝒕 a 𝒍𝟐	sparse -subspace embedding matrix with K = O(P2M2/δε2) 
rows, then with probability 𝟏 − 𝜹, we can achieve (𝟏 + 𝜺)-approximation for tensor least square in O(nnz(𝒳)) time. 
Let 𝑺𝒏𝒔 , n = 1, 2, 3 be a sparse 𝒍𝟐-subspace embedding matrix with K = O(R/ε) rows, then with high probability, we can 
achieve (1 + ε)-approximation for low-rank tensor approximation in O(nnz(𝒲′)) + poly(P + Q + M)poly(R/ε) time, 

Synthetic: 30000	time	stamps	with	
VAR(2)	model,	parameter	tensor	
W	∈ R 30×60×20.
Repeat	the	procedure	for	10	times.	

𝑺𝟐𝒔

𝑺𝟑𝒔

𝑺𝟏𝒔
𝑺𝟐𝒔

𝑺𝟑𝒔

TimeLo
ca

tio
n

model data

0

0.2

0.4

0.6

0.8

1

1.2

Foursquare AWS

Forecasting RMSE

Sparse Gaussian SRP


